telmo000 commited on
Commit
c95100d
·
1 Parent(s): 1a71857

add app and requirements

Browse files
Files changed (2) hide show
  1. app.py +43 -0
  2. requirements.txt +7 -0
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from peft import PeftModel, PeftConfig
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+
5
+ peft_model_id = f"telmo000/bloom-positive-reframing"
6
+ config = PeftConfig.from_pretrained(peft_model_id)
7
+ model = AutoModelForCausalLM.from_pretrained(
8
+ config.base_model_name_or_path,
9
+ return_dict=True,
10
+ load_in_8bit=True,
11
+ device_map="auto",
12
+ )
13
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
14
+
15
+ # Load the Lora model
16
+ model = PeftModel.from_pretrained(model, peft_model_id)
17
+
18
+
19
+ def make_inference(original_text):
20
+ batch = tokenizer(
21
+ f"### Negative sentence:\n{original_text}\n\n### Reframing strategy: ['optimism']\n\n### Reframing sentence:\n",
22
+ return_tensors="pt",
23
+ )
24
+
25
+ with torch.cuda.amp.autocast():
26
+ output_tokens = model.generate(**batch, max_new_tokens=50)
27
+
28
+ return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
29
+
30
+
31
+ if __name__ == "__main__":
32
+ # make a gradio interface
33
+ import gradio as gr
34
+
35
+ gr.Interface(
36
+ make_inference,
37
+ [
38
+ gr.inputs.Textbox(lines=3, label="Original Text"),
39
+ ],
40
+ gr.outputs.Textbox(label="Ad"),
41
+ title="Bloom positive reframing",
42
+ description="Bloom positive reframing is a BLOOM-base generative model adjusted to the sentiment transfer task, where the objective is to reverse the sentiment polarity of a text without contradicting the original meaning. ",
43
+ ).launch()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ bitsandbytes
2
+ datasets
3
+ accelerate
4
+ loralib
5
+ gradio
6
+ git+https://github.com/huggingface/peft.git
7
+ git+https://github.com/huggingface/transformers.git@main