Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import datetime | |
| from typing import Dict, Optional, Sequence | |
| import numpy as np | |
| from mmengine.fileio import dump | |
| from xtcocotools.cocoeval import COCOeval | |
| from mmpose.registry import METRICS | |
| from .coco_metric import CocoMetric | |
| class CocoWholeBodyMetric(CocoMetric): | |
| """COCO-WholeBody evaluation metric. | |
| Evaluate AR, AP, and mAP for COCO-WholeBody keypoint detection tasks. | |
| Support COCO-WholeBody dataset. Please refer to | |
| `COCO keypoint evaluation <https://cocodataset.org/#keypoints-eval>`__ | |
| for more details. | |
| Args: | |
| ann_file (str, optional): Path to the coco format annotation file. | |
| If not specified, ground truth annotations from the dataset will | |
| be converted to coco format. Defaults to None | |
| use_area (bool): Whether to use ``'area'`` message in the annotations. | |
| If the ground truth annotations (e.g. CrowdPose, AIC) do not have | |
| the field ``'area'``, please set ``use_area=False``. | |
| Defaults to ``True`` | |
| iou_type (str): The same parameter as `iouType` in | |
| :class:`xtcocotools.COCOeval`, which can be ``'keypoints'``, or | |
| ``'keypoints_crowd'`` (used in CrowdPose dataset). | |
| Defaults to ``'keypoints'`` | |
| score_mode (str): The mode to score the prediction results which | |
| should be one of the following options: | |
| - ``'bbox'``: Take the score of bbox as the score of the | |
| prediction results. | |
| - ``'bbox_keypoint'``: Use keypoint score to rescore the | |
| prediction results. | |
| - ``'bbox_rle'``: Use rle_score to rescore the | |
| prediction results. | |
| Defaults to ``'bbox_keypoint'` | |
| keypoint_score_thr (float): The threshold of keypoint score. The | |
| keypoints with score lower than it will not be included to | |
| rescore the prediction results. Valid only when ``score_mode`` is | |
| ``bbox_keypoint``. Defaults to ``0.2`` | |
| nms_mode (str): The mode to perform Non-Maximum Suppression (NMS), | |
| which should be one of the following options: | |
| - ``'oks_nms'``: Use Object Keypoint Similarity (OKS) to | |
| perform NMS. | |
| - ``'soft_oks_nms'``: Use Object Keypoint Similarity (OKS) | |
| to perform soft NMS. | |
| - ``'none'``: Do not perform NMS. Typically for bottomup mode | |
| output. | |
| Defaults to ``'oks_nms'` | |
| nms_thr (float): The Object Keypoint Similarity (OKS) threshold | |
| used in NMS when ``nms_mode`` is ``'oks_nms'`` or | |
| ``'soft_oks_nms'``. Will retain the prediction results with OKS | |
| lower than ``nms_thr``. Defaults to ``0.9`` | |
| format_only (bool): Whether only format the output results without | |
| doing quantitative evaluation. This is designed for the need of | |
| test submission when the ground truth annotations are absent. If | |
| set to ``True``, ``outfile_prefix`` should specify the path to | |
| store the output results. Defaults to ``False`` | |
| outfile_prefix (str | None): The prefix of json files. It includes | |
| the file path and the prefix of filename, e.g., ``'a/b/prefix'``. | |
| If not specified, a temp file will be created. Defaults to ``None`` | |
| **kwargs: Keyword parameters passed to :class:`mmeval.BaseMetric` | |
| """ | |
| default_prefix: Optional[str] = 'coco-wholebody' | |
| body_num = 17 | |
| foot_num = 6 | |
| face_num = 68 | |
| left_hand_num = 21 | |
| right_hand_num = 21 | |
| def gt_to_coco_json(self, gt_dicts: Sequence[dict], | |
| outfile_prefix: str) -> str: | |
| """Convert ground truth to coco format json file. | |
| Args: | |
| gt_dicts (Sequence[dict]): Ground truth of the dataset. Each dict | |
| contains the ground truth information about the data sample. | |
| Required keys of the each `gt_dict` in `gt_dicts`: | |
| - `img_id`: image id of the data sample | |
| - `width`: original image width | |
| - `height`: original image height | |
| - `raw_ann_info`: the raw annotation information | |
| Optional keys: | |
| - `crowd_index`: measure the crowding level of an image, | |
| defined in CrowdPose dataset | |
| It is worth mentioning that, in order to compute `CocoMetric`, | |
| there are some required keys in the `raw_ann_info`: | |
| - `id`: the id to distinguish different annotations | |
| - `image_id`: the image id of this annotation | |
| - `category_id`: the category of the instance. | |
| - `bbox`: the object bounding box | |
| - `keypoints`: the keypoints cooridinates along with their | |
| visibilities. Note that it need to be aligned | |
| with the official COCO format, e.g., a list with length | |
| N * 3, in which N is the number of keypoints. And each | |
| triplet represent the [x, y, visible] of the keypoint. | |
| - 'keypoints' | |
| - `iscrowd`: indicating whether the annotation is a crowd. | |
| It is useful when matching the detection results to | |
| the ground truth. | |
| There are some optional keys as well: | |
| - `area`: it is necessary when `self.use_area` is `True` | |
| - `num_keypoints`: it is necessary when `self.iou_type` | |
| is set as `keypoints_crowd`. | |
| outfile_prefix (str): The filename prefix of the json files. If the | |
| prefix is "somepath/xxx", the json file will be named | |
| "somepath/xxx.gt.json". | |
| Returns: | |
| str: The filename of the json file. | |
| """ | |
| image_infos = [] | |
| annotations = [] | |
| img_ids = [] | |
| ann_ids = [] | |
| for gt_dict in gt_dicts: | |
| # filter duplicate image_info | |
| if gt_dict['img_id'] not in img_ids: | |
| image_info = dict( | |
| id=gt_dict['img_id'], | |
| width=gt_dict['width'], | |
| height=gt_dict['height'], | |
| ) | |
| if self.iou_type == 'keypoints_crowd': | |
| image_info['crowdIndex'] = gt_dict['crowd_index'] | |
| image_infos.append(image_info) | |
| img_ids.append(gt_dict['img_id']) | |
| # filter duplicate annotations | |
| for ann in gt_dict['raw_ann_info']: | |
| annotation = dict( | |
| id=ann['id'], | |
| image_id=ann['image_id'], | |
| category_id=ann['category_id'], | |
| bbox=ann['bbox'], | |
| keypoints=ann['keypoints'], | |
| foot_kpts=ann['foot_kpts'], | |
| face_kpts=ann['face_kpts'], | |
| lefthand_kpts=ann['lefthand_kpts'], | |
| righthand_kpts=ann['righthand_kpts'], | |
| iscrowd=ann['iscrowd'], | |
| ) | |
| if self.use_area: | |
| assert 'area' in ann, \ | |
| '`area` is required when `self.use_area` is `True`' | |
| annotation['area'] = ann['area'] | |
| annotations.append(annotation) | |
| ann_ids.append(ann['id']) | |
| info = dict( | |
| date_created=str(datetime.datetime.now()), | |
| description='Coco json file converted by mmpose CocoMetric.') | |
| coco_json: dict = dict( | |
| info=info, | |
| images=image_infos, | |
| categories=self.dataset_meta['CLASSES'], | |
| licenses=None, | |
| annotations=annotations, | |
| ) | |
| converted_json_path = f'{outfile_prefix}.gt.json' | |
| dump(coco_json, converted_json_path, sort_keys=True, indent=4) | |
| return converted_json_path | |
| def results2json(self, keypoints: Dict[int, list], | |
| outfile_prefix: str) -> str: | |
| """Dump the keypoint detection results to a COCO style json file. | |
| Args: | |
| keypoints (Dict[int, list]): Keypoint detection results | |
| of the dataset. | |
| outfile_prefix (str): The filename prefix of the json files. If the | |
| prefix is "somepath/xxx", the json files will be named | |
| "somepath/xxx.keypoints.json", | |
| Returns: | |
| str: The json file name of keypoint results. | |
| """ | |
| # the results with category_id | |
| cat_id = 1 | |
| cat_results = [] | |
| cuts = np.cumsum([ | |
| 0, self.body_num, self.foot_num, self.face_num, self.left_hand_num, | |
| self.right_hand_num | |
| ]) * 3 | |
| for _, img_kpts in keypoints.items(): | |
| _keypoints = np.array( | |
| [img_kpt['keypoints'] for img_kpt in img_kpts]) | |
| num_keypoints = self.dataset_meta['num_keypoints'] | |
| # collect all the person keypoints in current image | |
| _keypoints = _keypoints.reshape(-1, num_keypoints * 3) | |
| result = [{ | |
| 'image_id': img_kpt['img_id'], | |
| 'category_id': cat_id, | |
| 'keypoints': _keypoint[cuts[0]:cuts[1]].tolist(), | |
| 'foot_kpts': _keypoint[cuts[1]:cuts[2]].tolist(), | |
| 'face_kpts': _keypoint[cuts[2]:cuts[3]].tolist(), | |
| 'lefthand_kpts': _keypoint[cuts[3]:cuts[4]].tolist(), | |
| 'righthand_kpts': _keypoint[cuts[4]:cuts[5]].tolist(), | |
| 'score': float(img_kpt['score']), | |
| } for img_kpt, _keypoint in zip(img_kpts, _keypoints)] | |
| cat_results.extend(result) | |
| res_file = f'{outfile_prefix}.keypoints.json' | |
| dump(cat_results, res_file, sort_keys=True, indent=4) | |
| def _do_python_keypoint_eval(self, outfile_prefix: str) -> list: | |
| """Do keypoint evaluation using COCOAPI. | |
| Args: | |
| outfile_prefix (str): The filename prefix of the json files. If the | |
| prefix is "somepath/xxx", the json files will be named | |
| "somepath/xxx.keypoints.json", | |
| Returns: | |
| list: a list of tuples. Each tuple contains the evaluation stats | |
| name and corresponding stats value. | |
| """ | |
| res_file = f'{outfile_prefix}.keypoints.json' | |
| coco_det = self.coco.loadRes(res_file) | |
| sigmas = self.dataset_meta['sigmas'] | |
| cuts = np.cumsum([ | |
| 0, self.body_num, self.foot_num, self.face_num, self.left_hand_num, | |
| self.right_hand_num | |
| ]) | |
| coco_eval = COCOeval( | |
| self.coco, | |
| coco_det, | |
| 'keypoints_body', | |
| sigmas[cuts[0]:cuts[1]], | |
| use_area=True) | |
| coco_eval.params.useSegm = None | |
| coco_eval.evaluate() | |
| coco_eval.accumulate() | |
| coco_eval.summarize() | |
| coco_eval = COCOeval( | |
| self.coco, | |
| coco_det, | |
| 'keypoints_foot', | |
| sigmas[cuts[1]:cuts[2]], | |
| use_area=True) | |
| coco_eval.params.useSegm = None | |
| coco_eval.evaluate() | |
| coco_eval.accumulate() | |
| coco_eval.summarize() | |
| coco_eval = COCOeval( | |
| self.coco, | |
| coco_det, | |
| 'keypoints_face', | |
| sigmas[cuts[2]:cuts[3]], | |
| use_area=True) | |
| coco_eval.params.useSegm = None | |
| coco_eval.evaluate() | |
| coco_eval.accumulate() | |
| coco_eval.summarize() | |
| coco_eval = COCOeval( | |
| self.coco, | |
| coco_det, | |
| 'keypoints_lefthand', | |
| sigmas[cuts[3]:cuts[4]], | |
| use_area=True) | |
| coco_eval.params.useSegm = None | |
| coco_eval.evaluate() | |
| coco_eval.accumulate() | |
| coco_eval.summarize() | |
| coco_eval = COCOeval( | |
| self.coco, | |
| coco_det, | |
| 'keypoints_righthand', | |
| sigmas[cuts[4]:cuts[5]], | |
| use_area=True) | |
| coco_eval.params.useSegm = None | |
| coco_eval.evaluate() | |
| coco_eval.accumulate() | |
| coco_eval.summarize() | |
| coco_eval = COCOeval( | |
| self.coco, coco_det, 'keypoints_wholebody', sigmas, use_area=True) | |
| coco_eval.params.useSegm = None | |
| coco_eval.evaluate() | |
| coco_eval.accumulate() | |
| coco_eval.summarize() | |
| stats_names = [ | |
| 'AP', 'AP .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5', | |
| 'AR .75', 'AR (M)', 'AR (L)' | |
| ] | |
| info_str = list(zip(stats_names, coco_eval.stats)) | |
| return info_str | |