SDPose / mmpose /codecs /image_pose_lifting.py
teemosliang's picture
realease: publish the huggingface space demo of SDPose
d5532b9 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, Tuple
import numpy as np
from mmpose.registry import KEYPOINT_CODECS
from .base import BaseKeypointCodec
@KEYPOINT_CODECS.register_module()
class ImagePoseLifting(BaseKeypointCodec):
r"""Generate keypoint coordinates for pose lifter.
Note:
- instance number: N
- keypoint number: K
- keypoint dimension: D
- pose-lifitng target dimension: C
Args:
num_keypoints (int): The number of keypoints in the dataset.
root_index (int): Root keypoint index in the pose.
remove_root (bool): If true, remove the root keypoint from the pose.
Default: ``False``.
save_index (bool): If true, store the root position separated from the
original pose. Default: ``False``.
keypoints_mean (np.ndarray, optional): Mean values of keypoints
coordinates in shape (K, D).
keypoints_std (np.ndarray, optional): Std values of keypoints
coordinates in shape (K, D).
target_mean (np.ndarray, optional): Mean values of pose-lifitng target
coordinates in shape (K, C).
target_std (np.ndarray, optional): Std values of pose-lifitng target
coordinates in shape (K, C).
"""
auxiliary_encode_keys = {'lifting_target', 'lifting_target_visible'}
def __init__(self,
num_keypoints: int,
root_index: int,
remove_root: bool = False,
save_index: bool = False,
keypoints_mean: Optional[np.ndarray] = None,
keypoints_std: Optional[np.ndarray] = None,
target_mean: Optional[np.ndarray] = None,
target_std: Optional[np.ndarray] = None):
super().__init__()
self.num_keypoints = num_keypoints
self.root_index = root_index
self.remove_root = remove_root
self.save_index = save_index
if keypoints_mean is not None and keypoints_std is not None:
assert keypoints_mean.shape == keypoints_std.shape
if target_mean is not None and target_std is not None:
assert target_mean.shape == target_std.shape
self.keypoints_mean = keypoints_mean
self.keypoints_std = keypoints_std
self.target_mean = target_mean
self.target_std = target_std
def encode(self,
keypoints: np.ndarray,
keypoints_visible: Optional[np.ndarray] = None,
lifting_target: Optional[np.ndarray] = None,
lifting_target_visible: Optional[np.ndarray] = None) -> dict:
"""Encoding keypoints from input image space to normalized space.
Args:
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D).
keypoints_visible (np.ndarray, optional): Keypoint visibilities in
shape (N, K).
lifting_target (np.ndarray, optional): 3d target coordinate in
shape (K, C).
lifting_target_visible (np.ndarray, optional): Target coordinate in
shape (K, ).
Returns:
encoded (dict): Contains the following items:
- keypoint_labels (np.ndarray): The processed keypoints in
shape (K * D, N) where D is 2 for 2d coordinates.
- lifting_target_label: The processed target coordinate in
shape (K, C) or (K-1, C).
- lifting_target_weights (np.ndarray): The target weights in
shape (K, ) or (K-1, ).
- trajectory_weights (np.ndarray): The trajectory weights in
shape (K, ).
- target_root (np.ndarray): The root coordinate of target in
shape (C, ).
In addition, there are some optional items it may contain:
- target_root_removed (bool): Indicate whether the root of
pose lifting target is removed. Added if ``self.remove_root``
is ``True``.
- target_root_index (int): An integer indicating the index of
root. Added if ``self.remove_root`` and ``self.save_index``
are ``True``.
"""
if keypoints_visible is None:
keypoints_visible = np.ones(keypoints.shape[:2], dtype=np.float32)
if lifting_target is None:
lifting_target = keypoints[0]
# set initial value for `lifting_target_weights`
# and `trajectory_weights`
if lifting_target_visible is None:
lifting_target_visible = np.ones(
lifting_target.shape[:-1], dtype=np.float32)
lifting_target_weights = lifting_target_visible
trajectory_weights = (1 / lifting_target[:, 2])
else:
valid = lifting_target_visible > 0.5
lifting_target_weights = np.where(valid, 1., 0.).astype(np.float32)
trajectory_weights = lifting_target_weights
encoded = dict()
# Zero-center the target pose around a given root keypoint
assert (lifting_target.ndim >= 2 and
lifting_target.shape[-2] > self.root_index), \
f'Got invalid joint shape {lifting_target.shape}'
root = lifting_target[..., self.root_index, :]
lifting_target_label = lifting_target - root
if self.remove_root:
lifting_target_label = np.delete(
lifting_target_label, self.root_index, axis=-2)
assert lifting_target_weights.ndim in {1, 2}
axis_to_remove = -2 if lifting_target_weights.ndim == 2 else -1
lifting_target_weights = np.delete(
lifting_target_weights, self.root_index, axis=axis_to_remove)
# Add a flag to avoid latter transforms that rely on the root
# joint or the original joint index
encoded['target_root_removed'] = True
# Save the root index which is necessary to restore the global pose
if self.save_index:
encoded['target_root_index'] = self.root_index
# Normalize the 2D keypoint coordinate with mean and std
keypoint_labels = keypoints.copy()
if self.keypoints_mean is not None and self.keypoints_std is not None:
keypoints_shape = keypoints.shape
assert self.keypoints_mean.shape == keypoints_shape[1:]
keypoint_labels = (keypoint_labels -
self.keypoints_mean) / self.keypoints_std
if self.target_mean is not None and self.target_std is not None:
target_shape = lifting_target_label.shape
assert self.target_mean.shape == target_shape
lifting_target_label = (lifting_target_label -
self.target_mean) / self.target_std
# Generate reshaped keypoint coordinates
assert keypoint_labels.ndim in {2, 3}
if keypoint_labels.ndim == 2:
keypoint_labels = keypoint_labels[None, ...]
encoded['keypoint_labels'] = keypoint_labels
encoded['lifting_target_label'] = lifting_target_label
encoded['lifting_target_weights'] = lifting_target_weights
encoded['trajectory_weights'] = trajectory_weights
encoded['target_root'] = root
return encoded
def decode(self,
encoded: np.ndarray,
target_root: Optional[np.ndarray] = None
) -> Tuple[np.ndarray, np.ndarray]:
"""Decode keypoint coordinates from normalized space to input image
space.
Args:
encoded (np.ndarray): Coordinates in shape (N, K, C).
target_root (np.ndarray, optional): The target root coordinate.
Default: ``None``.
Returns:
keypoints (np.ndarray): Decoded coordinates in shape (N, K, C).
scores (np.ndarray): The keypoint scores in shape (N, K).
"""
keypoints = encoded.copy()
if self.target_mean is not None and self.target_std is not None:
assert self.target_mean.shape == keypoints.shape[1:]
keypoints = keypoints * self.target_std + self.target_mean
if target_root.size > 0:
keypoints = keypoints + np.expand_dims(target_root, axis=0)
if self.remove_root:
keypoints = np.insert(
keypoints, self.root_index, target_root, axis=1)
scores = np.ones(keypoints.shape[:-1], dtype=np.float32)
return keypoints, scores