blur2vid / training /train_controlnet.py
ftaubner's picture
initial commit
7245cc5
# Copyright 2024 The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import signal
import sys
import threading
import time
import cv2
sys.path.append('..')
from PIL import Image
import logging
import math
import os
from pathlib import Path
import torch
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import numpy as np
from transformers import AutoTokenizer, T5EncoderModel
import diffusers
from diffusers import AutoencoderKLCogVideoX, CogVideoXDPMScheduler
from diffusers.optimization import get_scheduler
from diffusers.training_utils import (
cast_training_params,
free_memory,
)
from diffusers.utils import check_min_version, export_to_video, is_wandb_available
from diffusers.utils.torch_utils import is_compiled_module
from controlnet_datasets import FullMotionBlurDataset, GoPro2xMotionBlurDataset, OutsidePhotosDataset, GoProMotionBlurDataset, BAISTDataset
from controlnet_pipeline import ControlnetCogVideoXPipeline
from cogvideo_transformer import CogVideoXTransformer3DModel
from helpers import random_insert_latent_frame, transform_intervals
import os
from utils import save_frames_as_pngs, compute_prompt_embeddings, prepare_rotary_positional_embeddings, encode_prompt, get_optimizer, atomic_save, get_args
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.31.0.dev0")
logger = get_logger(__name__)
def log_validation(
pipe,
args,
accelerator,
pipeline_args,
):
logger.info(
f"Running validation... \n Generating {args.num_validation_videos} videos with prompt: {pipeline_args['prompt']}."
)
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
scheduler_args = {}
if "variance_type" in pipe.scheduler.config:
variance_type = pipe.scheduler.config.variance_type
if variance_type in ["learned", "learned_range"]:
variance_type = "fixed_small"
scheduler_args["variance_type"] = variance_type
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args)
pipe = pipe.to(accelerator.device)
# run inference
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
videos = []
for _ in range(args.num_validation_videos):
video = pipe(**pipeline_args, generator=generator, output_type="np").frames[0]
videos.append(video)
free_memory() #delete the pipeline to free up memory
return videos
def main(args):
global signal_recieved_time
if args.report_to == "wandb" and args.hub_token is not None:
raise ValueError(
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
" Please use `huggingface-cli login` to authenticate with the Hub."
)
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[kwargs],
)
# Disable AMP for MPS.
if torch.backends.mps.is_available():
accelerator.native_amp = False
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name,
exist_ok=True,
).repo_id
# Prepare models and scheduler
tokenizer = AutoTokenizer.from_pretrained(
os.path.join(args.base_dir, args.pretrained_model_name_or_path), subfolder="tokenizer", revision=args.revision
)
text_encoder = T5EncoderModel.from_pretrained(
os.path.join(args.base_dir, args.pretrained_model_name_or_path), subfolder="text_encoder", revision=args.revision
)
# CogVideoX-2b weights are stored in float16
config = CogVideoXTransformer3DModel.load_config(
os.path.join(args.base_dir, args.pretrained_model_name_or_path),
subfolder="transformer",
revision=args.revision,
variant=args.variant,
)
load_dtype = torch.bfloat16 if "5b" in os.path.join(args.base_dir, args.pretrained_model_name_or_path).lower() else torch.float16
transformer = CogVideoXTransformer3DModel.from_pretrained(
os.path.join(args.base_dir, args.pretrained_model_name_or_path),
subfolder="transformer",
torch_dtype=load_dtype,
revision=args.revision,
variant=args.variant,
low_cpu_mem_usage=False,
)
vae = AutoencoderKLCogVideoX.from_pretrained(
os.path.join(args.base_dir, args.pretrained_model_name_or_path), subfolder="vae", revision=args.revision, variant=args.variant
)
scheduler = CogVideoXDPMScheduler.from_pretrained(os.path.join(args.base_dir, args.pretrained_model_name_or_path), subfolder="scheduler")
if args.enable_slicing:
vae.enable_slicing()
if args.enable_tiling:
vae.enable_tiling()
# We only train the additional adapter controlnet layers
text_encoder.requires_grad_(False)
transformer.requires_grad_(True)
vae.requires_grad_(False)
# For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.state.deepspeed_plugin:
# DeepSpeed is handling precision, use what's in the DeepSpeed config
if (
"fp16" in accelerator.state.deepspeed_plugin.deepspeed_config
and accelerator.state.deepspeed_plugin.deepspeed_config["fp16"]["enabled"]
):
weight_dtype = torch.float16
if (
"bf16" in accelerator.state.deepspeed_plugin.deepspeed_config
and accelerator.state.deepspeed_plugin.deepspeed_config["bf16"]["enabled"]
):
weight_dtype = torch.float16
else:
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
text_encoder.to(accelerator.device, dtype=weight_dtype)
transformer.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32 and torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Make sure the trainable params are in float32.
if args.mixed_precision == "fp16":
# only upcast trainable parameters into fp32
cast_training_params([transformer], dtype=torch.float32)
trainable_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters()))
# Optimization parameters
trainable_parameters_with_lr = {"params": trainable_parameters, "lr": args.learning_rate}
params_to_optimize = [trainable_parameters_with_lr]
use_deepspeed_optimizer = (
accelerator.state.deepspeed_plugin is not None
and "optimizer" in accelerator.state.deepspeed_plugin.deepspeed_config
)
use_deepspeed_scheduler = (
accelerator.state.deepspeed_plugin is not None
and "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
)
optimizer = get_optimizer(args, params_to_optimize, use_deepspeed=use_deepspeed_optimizer)
# Dataset and DataLoader
DATASET_REGISTRY = {
"gopro": GoProMotionBlurDataset,
"gopro2x": GoPro2xMotionBlurDataset,
"full": FullMotionBlurDataset,
"baist": BAISTDataset,
"outsidephotos": OutsidePhotosDataset, # val-only special (no split)
}
if args.dataset not in DATASET_REGISTRY:
raise ValueError(f"Unknown dataset: {args.dataset}")
train_dataset_class = DATASET_REGISTRY[args.dataset]
val_dataset_class = train_dataset_class
common_kwargs = dict(
data_dir=os.path.join(args.base_dir, args.video_root_dir),
output_dir = args.output_dir,
image_size=(args.height, args.width),
stride=(args.stride_min, args.stride_max),
sample_n_frames=args.max_num_frames,
hflip_p=args.hflip_p,
)
def build_kwargs(is_train: bool):
"""Return constructor kwargs, adding split"""
kw = dict(common_kwargs)
kw["split"] = "train" if is_train else args.val_split
return kw
train_dataset = train_dataset_class(**build_kwargs(is_train=True))
val_dataset = val_dataset_class(**build_kwargs(is_train=False))
def encode_video(video):
video = video.to(accelerator.device, dtype=vae.dtype)
video = video.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
latent_dist = vae.encode(video).latent_dist.sample() * vae.config.scaling_factor
return latent_dist.permute(0, 2, 1, 3, 4).to(memory_format=torch.contiguous_format)
def collate_fn(examples):
blur_img = [example["blur_img"] for example in examples]
videos = [example["video"] for example in examples]
if "high_fps_video" in examples[0]:
high_fps_videos = [example["high_fps_video"] for example in examples]
high_fps_videos = torch.stack(high_fps_videos)
high_fps_videos = high_fps_videos.to(memory_format=torch.contiguous_format).float()
if "bbx" in examples[0]:
bbx = [example["bbx"] for example in examples]
bbx = torch.stack(bbx)
bbx = bbx.to(memory_format=torch.contiguous_format).float()
prompts = [example["caption"] for example in examples]
file_names = [example["file_name"] for example in examples]
num_frames = [example["num_frames"] for example in examples]
input_intervals = [example["input_interval"] for example in examples]
output_intervals = [example["output_interval"] for example in examples]
videos = torch.stack(videos)
videos = videos.to(memory_format=torch.contiguous_format).float()
blur_img = torch.stack(blur_img)
blur_img = blur_img.to(memory_format=torch.contiguous_format).float()
input_intervals = torch.stack(input_intervals)
input_intervals = input_intervals.to(memory_format=torch.contiguous_format).float()
output_intervals = torch.stack(output_intervals)
output_intervals = output_intervals.to(memory_format=torch.contiguous_format).float()
out_dict = {
"file_names": file_names,
"blur_img": blur_img,
"videos": videos,
"num_frames": num_frames,
"prompts": prompts,
"input_intervals": input_intervals,
"output_intervals": output_intervals,
}
if "high_fps_video" in examples[0]:
out_dict["high_fps_video"] = high_fps_videos
if "bbx" in examples[0]:
out_dict["bbx"] = bbx
return out_dict
train_dataloader = DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=args.dataloader_num_workers,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=1,
shuffle=False,
collate_fn=collate_fn,
num_workers=args.dataloader_num_workers,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
if use_deepspeed_scheduler:
from accelerate.utils import DummyScheduler
lr_scheduler = DummyScheduler(
name=args.lr_scheduler,
optimizer=optimizer,
total_num_steps=args.max_train_steps * accelerator.num_processes,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
)
else:
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# Prepare everything with our `accelerator`.
transformer, optimizer, train_dataloader, lr_scheduler, val_dataloader = accelerator.prepare(
transformer, optimizer, train_dataloader, lr_scheduler, val_dataloader
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
tracker_name = args.tracker_name or "cogvideox-controlnet"
accelerator.init_trackers(tracker_name, config=vars(args))
accelerator.register_for_checkpointing(transformer, optimizer, lr_scheduler)
save_path = os.path.join(args.output_dir, f"checkpoint")
#check if the checkpoint already exists
if os.path.exists(save_path):
accelerator.load_state(save_path)
logger.info(f"Loaded state from {save_path}")
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
num_trainable_parameters = sum(param.numel() for model in params_to_optimize for param in model["params"])
logger.info("***** Running training *****")
logger.info(f" Num trainable parameters = {num_trainable_parameters}")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
initial_global_step = 0
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
vae_scale_factor_spatial = 2 ** (len(vae.config.block_out_channels) - 1)
# For DeepSpeed training
model_config = transformer.module.config if hasattr(transformer, "module") else transformer.config
for epoch in range(first_epoch, args.num_train_epochs):
transformer.train()
for step, batch in enumerate(train_dataloader):
if not args.just_validate:
models_to_accumulate = [transformer]
with accelerator.accumulate(models_to_accumulate):
model_input = encode_video(batch["videos"]).to(dtype=weight_dtype) # [B, F, C, H, W]
prompts = batch["prompts"]
image_latent = encode_video(batch["blur_img"]).to(dtype=weight_dtype) # [B, F, C, H, W]
input_intervals = batch["input_intervals"]
output_intervals = batch["output_intervals"]
batch_size = len(prompts)
# True = use real prompt (conditional); False = drop to empty (unconditional)
guidance_mask = torch.rand(batch_size, device=accelerator.device) >= 0.2
# build a new prompts list: keep the original where mask True, else blank
per_sample_prompts = [
prompts[i] if guidance_mask[i] else ""
for i in range(batch_size)
]
prompts = per_sample_prompts
# encode prompts
prompt_embeds = compute_prompt_embeddings(
tokenizer,
text_encoder,
prompts,
model_config.max_text_seq_length,
accelerator.device,
weight_dtype,
requires_grad=False,
)
# Sample noise that will be added to the latents
noise = torch.randn_like(model_input)
batch_size, num_frames, num_channels, height, width = model_input.shape
# Sample a random timestep for each image
timesteps = torch.randint(
0, scheduler.config.num_train_timesteps, (batch_size,), device=model_input.device
)
timesteps = timesteps.long()
# Prepare rotary embeds
image_rotary_emb = (
prepare_rotary_positional_embeddings(
height=args.height,
width=args.width,
num_frames=num_frames,
vae_scale_factor_spatial=vae_scale_factor_spatial,
patch_size=model_config.patch_size,
attention_head_dim=model_config.attention_head_dim,
device=accelerator.device,
)
if model_config.use_rotary_positional_embeddings
else None
)
# Add noise to the model input according to the noise magnitude at each timestep (this is the forward diffusion process)
noisy_model_input = scheduler.add_noise(model_input, noise, timesteps)
input_intervals = transform_intervals(input_intervals, frames_per_latent=4)
output_intervals = transform_intervals(output_intervals, frames_per_latent=4)
#first interval is always rep
noisy_model_input, target, condition_mask, intervals = random_insert_latent_frame(image_latent, noisy_model_input, model_input, input_intervals, output_intervals, special_info=args.special_info)
for i in range(batch_size):
if not guidance_mask[i]:
noisy_model_input[i][condition_mask[i]] = 0
# Predict the noise residual
model_output = transformer(
hidden_states=noisy_model_input,
encoder_hidden_states=prompt_embeds,
intervals=intervals,
condition_mask=condition_mask,
timestep=timesteps,
image_rotary_emb=image_rotary_emb,
return_dict=False,
)[0]
#this line below is also scaling the input which is bad - so the model is also learning to scale this input latent somehow
#thus, we need to replace the first frame with the original frame later
model_pred = scheduler.get_velocity(model_output, noisy_model_input, timesteps)
alphas_cumprod = scheduler.alphas_cumprod[timesteps]
weights = 1 / (1 - alphas_cumprod)
while len(weights.shape) < len(model_pred.shape):
weights = weights.unsqueeze(-1)
loss = torch.mean((weights * (model_pred[~condition_mask] - target[~condition_mask]) ** 2).reshape(batch_size, -1), dim=1)
loss = loss.mean()
accelerator.backward(loss)
if accelerator.state.deepspeed_plugin is None:
if not args.just_validate:
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
#wait for all processes to finish
accelerator.wait_for_everyone()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if signal_recieved_time != 0:
if time.time() - signal_recieved_time > 60:
print("Signal received, saving state and exiting")
atomic_save(save_path, accelerator)
signal_recieved_time = 0
exit(0)
else:
exit(0)
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
atomic_save(save_path, accelerator)
logger.info(f"Saved state to {save_path}")
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
print("Step", step)
accelerator.wait_for_everyone()
if step == 0 or args.validation_prompt is not None and (step + 1) % args.validation_steps == 0:
# Create pipeline
pipe = ControlnetCogVideoXPipeline.from_pretrained(
os.path.join(args.base_dir, args.pretrained_model_name_or_path),
transformer=unwrap_model(transformer),
text_encoder=unwrap_model(text_encoder),
vae=unwrap_model(vae),
scheduler=scheduler,
torch_dtype=weight_dtype,
)
print("Length of validation dataset: ", len(val_dataloader))
#create a pipeline per accelerator device (for faster inference)
with torch.autocast(str(accelerator.device).replace(":0", ""), enabled=accelerator.mixed_precision == "fp16"):
for batch in val_dataloader:
frame = ((batch["blur_img"][0].permute(0,2,3,1).cpu().numpy() + 1)*127.5).astype(np.uint8)
pipeline_args = {
"prompt": "",
"negative_prompt": "",
"image": frame,
"input_intervals": batch["input_intervals"][0:1],
"output_intervals": batch["output_intervals"][0:1],
"guidance_scale": args.guidance_scale,
"use_dynamic_cfg": args.use_dynamic_cfg,
"height": args.height,
"width": args.width,
"num_frames": args.max_num_frames,
"num_inference_steps": args.num_inference_steps,
}
modified_filenames = []
filenames = batch['file_names']
for file in filenames:
modified_filenames.append(os.path.splitext(file)[0] + ".mp4")
num_frames = batch["num_frames"][0]
#save the gt_video output
if args.dataset not in ["outsidephotos"]:
gt_video = batch["videos"][0].permute(0,2,3,1).cpu().numpy()
gt_video = ((gt_video + 1) * 127.5)/255
gt_video = gt_video[0:num_frames]
for file in modified_filenames:
gt_file_name = os.path.join(args.output_dir, "gt", modified_filenames[0])
os.makedirs(os.path.dirname(gt_file_name), exist_ok=True)
if args.dataset == "baist":
bbox = batch["bbx"][0].cpu().numpy().astype(np.int32)
gt_video = gt_video[:, bbox[1]:bbox[3], bbox[0]:bbox[2], :]
gt_video = np.array([cv2.resize(frame, (160, 192)) for frame in gt_video]) #resize to 192x160
save_frames_as_pngs((gt_video*255).astype(np.uint8), gt_file_name.replace(".mp4", "").replace("gt", "gt_frames"))
export_to_video(gt_video, gt_file_name, fps=20)
if "high_fps_video" in batch:
high_fps_video = batch["high_fps_video"][0].permute(0,2,3,1).cpu().numpy()
high_fps_video = ((high_fps_video + 1) * 127.5)/255
gt_file_name = os.path.join(args.output_dir, "gt_highfps", modified_filenames[0])
#save the blurred image
if args.dataset in ["full", "outsidephotos", "gopro2x", "baist"]:
for file in modified_filenames:
blurry_file_name = os.path.join(args.output_dir, "blurry", modified_filenames[0].replace(".mp4", ".png"))
os.makedirs(os.path.dirname(blurry_file_name), exist_ok=True)
if args.dataset == "baist":
bbox = batch["bbx"][0].cpu().numpy().astype(np.int32)
frame0 = frame[0][bbox[1]:bbox[3], bbox[0]:bbox[2], :]
frame0 = cv2.resize(frame0, (160, 192)) #resize to 192x160
Image.fromarray(frame0).save(blurry_file_name)
else:
Image.fromarray(frame[0]).save(blurry_file_name)
videos = log_validation(
pipe=pipe,
args=args,
accelerator=accelerator,
pipeline_args=pipeline_args
)
#save the output video frames as pngs (uncompressed results) and mp4 (compressed results easily viewable)
for i, video in enumerate(videos):
video = video[0:num_frames]
filename = os.path.join(args.output_dir, "deblurred", modified_filenames[0])
os.makedirs(os.path.dirname(filename), exist_ok=True)
if args.dataset == "baist":
bbox = batch["bbx"][0].cpu().numpy().astype(np.int32)
video = video[:, bbox[1]:bbox[3], bbox[0]:bbox[2], :]
video = np.array([cv2.resize(frame, (160, 192)) for frame in video]) #resize to 192x160
save_frames_as_pngs((video*255).astype(np.uint8), filename.replace(".mp4", "").replace("deblurred", "deblurred_frames"))
export_to_video(video, filename, fps=20)
accelerator.wait_for_everyone()
if args.just_validate:
exit(0)
accelerator.wait_for_everyone()
accelerator.end_training()
signal_recieved_time = 0
def handle_signal(signum, frame):
global signal_recieved_time
signal_recieved_time = time.time()
print(f"Signal {signum} received at {time.ctime()}")
with open("/datasets/sai/gencam/cogvideox/interrupted.txt", "w") as f:
f.write(f"Training was interrupted at {time.ctime()}")
if __name__ == "__main__":
args = get_args()
print("Registering signal handler")
#Register the signal handler (catch SIGUSR1)
signal.signal(signal.SIGUSR1, handle_signal)
main_thread = threading.Thread(target=main, args=(args,))
main_thread.start()
while signal_recieved_time!= 0:
time.sleep(1)
#call main with args as a thread