Spaces:
Running
on
Zero
Running
on
Zero
| import inspect | |
| import math | |
| from typing import Callable, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| from torchvision import transforms | |
| from einops import rearrange, repeat | |
| from transformers import T5EncoderModel, T5Tokenizer | |
| from diffusers.video_processor import VideoProcessor | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.models.embeddings import get_3d_rotary_pos_embed | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel | |
| from diffusers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipelineOutput, CogVideoXLoraLoaderMixin | |
| from training.helpers import random_insert_latent_frame, transform_intervals | |
| import torch.nn.functional as F | |
| from torch.utils.checkpoint import checkpoint | |
| def resize_for_crop(image, crop_h, crop_w): | |
| img_h, img_w = image.shape[-2:] | |
| if img_h >= crop_h and img_w >= crop_w: | |
| coef = max(crop_h / img_h, crop_w / img_w) | |
| elif img_h <= crop_h and img_w <= crop_w: | |
| coef = max(crop_h / img_h, crop_w / img_w) | |
| else: | |
| coef = crop_h / img_h if crop_h > img_h else crop_w / img_w | |
| out_h, out_w = int(img_h * coef), int(img_w * coef) | |
| resized_image = transforms.functional.resize(image, (out_h, out_w), antialias=True) | |
| return resized_image | |
| def prepare_frames(input_images, video_size, do_resize=True, do_crop=True): | |
| input_images = np.stack([np.array(x) for x in input_images]) | |
| images_tensor = torch.from_numpy(input_images).permute(0, 3, 1, 2) / 127.5 - 1 | |
| if do_resize: | |
| images_tensor = [resize_for_crop(x, crop_h=video_size[0], crop_w=video_size[1]) for x in images_tensor] | |
| if do_crop: | |
| images_tensor = [transforms.functional.center_crop(x, video_size) for x in images_tensor] | |
| if isinstance(images_tensor, list): | |
| images_tensor = torch.stack(images_tensor) | |
| return images_tensor.unsqueeze(0) | |
| def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): | |
| tw = tgt_width | |
| th = tgt_height | |
| h, w = src | |
| r = h / w | |
| if r > (th / tw): | |
| resize_height = th | |
| resize_width = int(round(th / h * w)) | |
| else: | |
| resize_width = tw | |
| resize_height = int(round(tw / w * h)) | |
| crop_top = int(round((th - resize_height) / 2.0)) | |
| crop_left = int(round((tw - resize_width) / 2.0)) | |
| return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| class ControlnetCogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin): | |
| _optional_components = [] | |
| model_cpu_offload_seq = "text_encoder->transformer->vae" | |
| _callback_tensor_inputs = [ | |
| "latents", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| ] | |
| def __init__( | |
| self, | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| vae: AutoencoderKLCogVideoX, | |
| transformer: CogVideoXTransformer3DModel, | |
| scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler | |
| ) | |
| self.vae_scale_factor_spatial = ( | |
| 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 | |
| ) | |
| self.vae_scale_factor_temporal = ( | |
| self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 | |
| ) | |
| self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_videos_per_prompt: int = 1, | |
| max_sequence_length: int = 226, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because `max_sequence_length` is set to " | |
| f" {max_sequence_length} tokens: {removed_text}" | |
| ) | |
| # Had to disable auto cast here, otherwise the text encoder produces NaNs. | |
| # Hope it doesn't break training | |
| with torch.autocast(device_type=device.type, enabled=False): | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] | |
| # prompt embeds is nan here! | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| _, seq_len, _ = prompt_embeds.shape | |
| prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
| return prompt_embeds | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| do_classifier_free_guidance: bool = True, | |
| num_videos_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| max_sequence_length: int = 226, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
| Whether to use classifier free guidance or not. | |
| num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
| Number of videos that should be generated per prompt. torch device to place the resulting embeddings on | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| device: (`torch.device`, *optional*): | |
| torch device | |
| dtype: (`torch.dtype`, *optional*): | |
| torch dtype | |
| """ | |
| device = device or self._execution_device | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt is not None: | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=prompt, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| negative_prompt = negative_prompt or "" | |
| negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
| if prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| negative_prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=negative_prompt, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| return prompt_embeds, negative_prompt_embeds | |
| def prepare_latents( | |
| self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None | |
| ): | |
| shape = ( | |
| batch_size, | |
| (num_frames - 1) // self.vae_scale_factor_temporal + 1, | |
| num_channels_latents, | |
| height // self.vae_scale_factor_spatial, | |
| width // self.vae_scale_factor_spatial, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def prepare_image_latents(self, | |
| image: torch.Tensor, | |
| batch_size: int = 1, | |
| num_channels_latents: int = 16, | |
| num_frames: int = 13, | |
| height: int = 60, | |
| width: int = 90, | |
| dtype: Optional[torch.dtype] = None, | |
| device: Optional[torch.device] = None, | |
| generator: Optional[torch.Generator] = None, | |
| latents: Optional[torch.Tensor] = None,): | |
| image_prepared = prepare_frames(image, (height, width)).to(device).to(dtype=dtype).permute(0, 2, 1, 3, 4) # [B, C, F, H, W] | |
| image_latents = [retrieve_latents(self.vae.encode(image_prepared), generator)] | |
| image_latents = torch.cat(image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W] | |
| if not self.vae.config.invert_scale_latents: | |
| image_latents = self.vae_scaling_factor_image * image_latents | |
| else: | |
| # This is awkward but required because the CogVideoX team forgot to multiply the | |
| # scaling factor during training :) | |
| image_latents = 1 / self.vae_scaling_factor_image * image_latents | |
| # else: | |
| # # This is awkward but required because the CogVideoX team forgot to multiply the | |
| # # scaling factor during training :) | |
| # image_latents = 1 / self.vae_scaling_factor_image * image_latents | |
| return image_prepared, image_latents | |
| # def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: | |
| # latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] | |
| # latents = 1 / self.vae.config.scaling_factor * latents | |
| # frames = self.vae.decode(latents).sample | |
| # return frames | |
| def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: | |
| latents = latents.permute(0, 2, 1, 3, 4) # [B, C, T, H, W] | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| def decode_fn(x): | |
| return self.vae.decode(x).sample | |
| # Use checkpointing to save memory | |
| frames = checkpoint(decode_fn, latents, use_reentrant=False) | |
| return frames | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| # Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| callback_on_step_end_tensor_inputs, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| def fuse_qkv_projections(self) -> None: | |
| r"""Enables fused QKV projections.""" | |
| self.fusing_transformer = True | |
| self.transformer.fuse_qkv_projections() | |
| def unfuse_qkv_projections(self) -> None: | |
| r"""Disable QKV projection fusion if enabled.""" | |
| if not self.fusing_transformer: | |
| logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.") | |
| else: | |
| self.transformer.unfuse_qkv_projections() | |
| self.fusing_transformer = False | |
| def _prepare_rotary_positional_embeddings( | |
| self, | |
| height: int, | |
| width: int, | |
| num_frames: int, | |
| device: torch.device, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | |
| grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | |
| base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | |
| base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | |
| grid_crops_coords = get_resize_crop_region_for_grid( | |
| (grid_height, grid_width), base_size_width, base_size_height | |
| ) | |
| freqs_cos, freqs_sin = get_3d_rotary_pos_embed( | |
| embed_dim=self.transformer.config.attention_head_dim, | |
| crops_coords=grid_crops_coords, | |
| grid_size=(grid_height, grid_width), | |
| temporal_size=num_frames, | |
| ) | |
| freqs_cos = freqs_cos.to(device=device) | |
| freqs_sin = freqs_sin.to(device=device) | |
| return freqs_cos, freqs_sin | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def attention_kwargs(self): | |
| return self._attention_kwargs | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| image, | |
| input_intervals, | |
| output_intervals, | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| height: int = 480, | |
| width: int = 720, | |
| num_frames: int = 49, | |
| num_inference_steps: int = 50, | |
| timesteps: Optional[List[int]] = None, | |
| guidance_scale: float = 6, | |
| use_dynamic_cfg: bool = False, | |
| num_videos_per_prompt: int = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: str = "pil", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 226, | |
| ) -> Union[CogVideoXPipelineOutput, Tuple]: | |
| if num_frames > 49: | |
| raise ValueError( | |
| "The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation." | |
| ) | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial | |
| width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial | |
| num_videos_per_prompt = 1 | |
| self.vae_scaling_factor_image = self.vae.config.scaling_factor if getattr(self, "vae", None) else 0.7 | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| callback_on_step_end_tensor_inputs, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._interrupt = False | |
| # 2. Default call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| negative_prompt, | |
| do_classifier_free_guidance, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| self._num_timesteps = len(timesteps) | |
| # 5. Prepare latents. | |
| latent_channels = 16 #self.transformer.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_videos_per_prompt, | |
| latent_channels, | |
| num_frames, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| image_prepared, image_latents = self.prepare_image_latents( | |
| image, | |
| batch_size=batch_size, | |
| num_channels_latents=latent_channels, | |
| num_frames=num_frames, | |
| height=height, | |
| width=width, | |
| dtype=prompt_embeds.dtype, | |
| device=device, | |
| generator=generator, | |
| ) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 8. Create rotary embeds if required - THIS IS NOT USED | |
| image_rotary_emb = ( | |
| self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) | |
| if self.transformer.config.use_rotary_positional_embeddings | |
| else None | |
| ) | |
| # 9. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| input_intervals = input_intervals.to(device) | |
| output_intervals = output_intervals.to(device) | |
| input_intervals = transform_intervals(input_intervals) | |
| output_intervals = transform_intervals(output_intervals) | |
| latents_initial, target, condition_mask, intervals = random_insert_latent_frame(image_latents, latents, latents, input_intervals, output_intervals, special_info="just_one") | |
| latents = latents_initial.clone() | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| # for DPM-solver++ | |
| old_pred_original_sample = None | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| #replace first latent with image_latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| if do_classifier_free_guidance: | |
| latent_model_input[0][condition_mask[0]] = 0 #set unconditioned latents to 0 | |
| #TODO: Replace the conditional latents with the input latents | |
| latent_model_input[1][condition_mask[0]] = latents_initial[0][condition_mask[0]].to(latent_model_input.dtype) | |
| else: | |
| latent_model_input[:, condition_mask[0]] = latents_initial[0][condition_mask[0]].to(latent_model_input.dtype) | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| current_sampling_percent = i / len(timesteps) | |
| latent_model_input = latent_model_input.to(dtype=self.transformer.dtype) | |
| prompt_embeds = prompt_embeds.to(dtype=self.transformer.dtype) | |
| # predict noise model_output | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep=timestep, | |
| intervals=intervals, | |
| condition_mask=condition_mask, | |
| image_rotary_emb=image_rotary_emb, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred.float() | |
| # perform guidance | |
| if use_dynamic_cfg: | |
| self._guidance_scale = 1 + guidance_scale * ( | |
| (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 | |
| ) | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
| #so I think the problem is that the conditional noise doesn't have a realistic noise prediction on its own frame | |
| #what I really need to do is replace the unconditional noise at that frame | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| if not isinstance(self.scheduler, CogVideoXDPMScheduler): | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| else: | |
| latents, old_pred_original_sample = self.scheduler.step( | |
| noise_pred, | |
| old_pred_original_sample, | |
| t, | |
| timesteps[i - 1] if i > 0 else None, | |
| latents, | |
| **extra_step_kwargs, | |
| return_dict=False, | |
| ) | |
| latents = latents.to(prompt_embeds.dtype) | |
| # call the callback, if provided | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| #after exiting replace the conditioning latent with image_latents | |
| #latents[:, motion_blur_amount:motion_blur_amount+1] = image_latents[:, 0:1] | |
| if not output_type == "latent": | |
| latents = latents[~condition_mask].unsqueeze(0) | |
| video = self.decode_latents(latents) | |
| video = self.video_processor.postprocess_video(video=video, output_type=output_type) | |
| else: | |
| video = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (video,) | |
| return CogVideoXPipelineOutput(frames=video) |