Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import logging | |
| import os | |
| import sys | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| from seq2seq_trainer import Seq2SeqTrainer | |
| from seq2seq_training_args import Seq2SeqTrainingArguments | |
| import transformers | |
| from transformers import ( | |
| AutoConfig, | |
| AutoModelForSeq2SeqLM, | |
| AutoTokenizer, | |
| HfArgumentParser, | |
| MBartTokenizer, | |
| MBartTokenizerFast, | |
| set_seed, | |
| ) | |
| from transformers.trainer_utils import EvaluationStrategy, is_main_process | |
| from transformers.training_args import ParallelMode | |
| from utils import ( | |
| Seq2SeqDataCollator, | |
| Seq2SeqDataset, | |
| assert_all_frozen, | |
| build_compute_metrics_fn, | |
| check_output_dir, | |
| freeze_embeds, | |
| freeze_params, | |
| lmap, | |
| save_json, | |
| use_task_specific_params, | |
| write_txt_file, | |
| ) | |
| logger = logging.getLogger(__name__) | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."}) | |
| freeze_embeds: bool = field(default=False, metadata={"help": "Whether to freeze the embeddings."}) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| data_dir: str = field( | |
| metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} | |
| ) | |
| task: Optional[str] = field( | |
| default="summarization", | |
| metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, | |
| ) | |
| max_source_length: Optional[int] = field( | |
| default=1024, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| max_target_length: Optional[int] = field( | |
| default=128, | |
| metadata={ | |
| "help": ( | |
| "The maximum total sequence length for target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| val_max_target_length: Optional[int] = field( | |
| default=142, | |
| metadata={ | |
| "help": ( | |
| "The maximum total sequence length for validation target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded. " | |
| "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " | |
| "during ``evaluate`` and ``predict``." | |
| ) | |
| }, | |
| ) | |
| test_max_target_length: Optional[int] = field( | |
| default=142, | |
| metadata={ | |
| "help": ( | |
| "The maximum total sequence length for test target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."}) | |
| n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."}) | |
| n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."}) | |
| src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."}) | |
| tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."}) | |
| eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."}) | |
| ignore_pad_token_for_loss: bool = field( | |
| default=True, | |
| metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, | |
| ) | |
| def handle_metrics(split, metrics, output_dir): | |
| """ | |
| Log and save metrics | |
| Args: | |
| - split: one of train, val, test | |
| - metrics: metrics dict | |
| - output_dir: where to save the metrics | |
| """ | |
| logger.info(f"***** {split} metrics *****") | |
| for key in sorted(metrics.keys()): | |
| logger.info(f" {key} = {metrics[key]}") | |
| save_json(metrics, os.path.join(output_dir, f"{split}_results.json")) | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| check_output_dir(training_args) | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, | |
| ) | |
| logger.warning( | |
| "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
| training_args.local_rank, | |
| training_args.device, | |
| training_args.n_gpu, | |
| bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED), | |
| training_args.fp16, | |
| ) | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| # Set the verbosity to info of the Transformers logger (on main process only): | |
| if is_main_process(training_args.local_rank): | |
| transformers.utils.logging.set_verbosity_info() | |
| logger.info("Training/evaluation parameters %s", training_args) | |
| # Set seed | |
| set_seed(training_args.seed) | |
| # Load pretrained model and tokenizer | |
| # | |
| # Distributed training: | |
| # The .from_pretrained methods guarantee that only one local process can concurrently | |
| # download model & vocab. | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") | |
| for p in extra_model_params: | |
| if getattr(training_args, p, None): | |
| assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" | |
| setattr(config, p, getattr(training_args, p)) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| model = AutoModelForSeq2SeqLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| from_tf=".ckpt" in model_args.model_name_or_path, | |
| config=config, | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| # use task specific params | |
| use_task_specific_params(model, data_args.task) | |
| # set num_beams for evaluation | |
| if data_args.eval_beams is None: | |
| data_args.eval_beams = model.config.num_beams | |
| # set decoder_start_token_id for MBart | |
| if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): | |
| assert ( | |
| data_args.tgt_lang is not None and data_args.src_lang is not None | |
| ), "mBart requires --tgt_lang and --src_lang" | |
| if isinstance(tokenizer, MBartTokenizer): | |
| model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang] | |
| else: | |
| model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.tgt_lang) | |
| if model_args.freeze_embeds: | |
| freeze_embeds(model) | |
| if model_args.freeze_encoder: | |
| freeze_params(model.get_encoder()) | |
| assert_all_frozen(model.get_encoder()) | |
| dataset_class = Seq2SeqDataset | |
| # Get datasets | |
| train_dataset = ( | |
| dataset_class( | |
| tokenizer, | |
| type_path="train", | |
| data_dir=data_args.data_dir, | |
| n_obs=data_args.n_train, | |
| max_target_length=data_args.max_target_length, | |
| max_source_length=data_args.max_source_length, | |
| prefix=model.config.prefix or "", | |
| ) | |
| if training_args.do_train | |
| else None | |
| ) | |
| eval_dataset = ( | |
| dataset_class( | |
| tokenizer, | |
| type_path="val", | |
| data_dir=data_args.data_dir, | |
| n_obs=data_args.n_val, | |
| max_target_length=data_args.val_max_target_length, | |
| max_source_length=data_args.max_source_length, | |
| prefix=model.config.prefix or "", | |
| ) | |
| if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO | |
| else None | |
| ) | |
| test_dataset = ( | |
| dataset_class( | |
| tokenizer, | |
| type_path="test", | |
| data_dir=data_args.data_dir, | |
| n_obs=data_args.n_test, | |
| max_target_length=data_args.test_max_target_length, | |
| max_source_length=data_args.max_source_length, | |
| prefix=model.config.prefix or "", | |
| ) | |
| if training_args.do_predict | |
| else None | |
| ) | |
| # Initialize our Trainer | |
| compute_metrics_fn = ( | |
| build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None | |
| ) | |
| trainer = Seq2SeqTrainer( | |
| model=model, | |
| args=training_args, | |
| data_args=data_args, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| data_collator=Seq2SeqDataCollator( | |
| tokenizer, data_args, model.config.decoder_start_token_id, training_args.tpu_num_cores | |
| ), | |
| compute_metrics=compute_metrics_fn, | |
| tokenizer=tokenizer, | |
| ) | |
| all_metrics = {} | |
| # Training | |
| if training_args.do_train: | |
| logger.info("*** Train ***") | |
| train_result = trainer.train( | |
| model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None | |
| ) | |
| metrics = train_result.metrics | |
| metrics["train_n_objs"] = data_args.n_train | |
| trainer.save_model() # this also saves the tokenizer | |
| if trainer.is_world_process_zero(): | |
| handle_metrics("train", metrics, training_args.output_dir) | |
| all_metrics.update(metrics) | |
| # Need to save the state, since Trainer.save_model saves only the tokenizer with the model | |
| trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json")) | |
| # For convenience, we also re-save the tokenizer to the same directory, | |
| # so that you can share your model easily on huggingface.co/models =) | |
| tokenizer.save_pretrained(training_args.output_dir) | |
| # Evaluation | |
| if training_args.do_eval: | |
| logger.info("*** Evaluate ***") | |
| metrics = trainer.evaluate(metric_key_prefix="val") | |
| metrics["val_n_objs"] = data_args.n_val | |
| metrics["val_loss"] = round(metrics["val_loss"], 4) | |
| if trainer.is_world_process_zero(): | |
| handle_metrics("val", metrics, training_args.output_dir) | |
| all_metrics.update(metrics) | |
| if training_args.do_predict: | |
| logger.info("*** Predict ***") | |
| test_output = trainer.predict(test_dataset=test_dataset, metric_key_prefix="test") | |
| metrics = test_output.metrics | |
| metrics["test_n_objs"] = data_args.n_test | |
| if trainer.is_world_process_zero(): | |
| metrics["test_loss"] = round(metrics["test_loss"], 4) | |
| handle_metrics("test", metrics, training_args.output_dir) | |
| all_metrics.update(metrics) | |
| if training_args.predict_with_generate: | |
| test_preds = tokenizer.batch_decode( | |
| test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True | |
| ) | |
| test_preds = lmap(str.strip, test_preds) | |
| write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt")) | |
| if trainer.is_world_process_zero(): | |
| save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json")) | |
| return all_metrics | |
| def _mp_fn(index): | |
| # For xla_spawn (TPUs) | |
| main() | |
| if __name__ == "__main__": | |
| main() | |