Spaces:
Paused
Paused
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import pytest | |
| from transformers import ( | |
| MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
| TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
| MBart50TokenizerFast, | |
| MBartConfig, | |
| MBartForConditionalGeneration, | |
| TranslationPipeline, | |
| pipeline, | |
| ) | |
| from transformers.testing_utils import is_pipeline_test, require_tf, require_torch, slow | |
| from .test_pipelines_common import ANY | |
| class TranslationPipelineTests(unittest.TestCase): | |
| model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING | |
| tf_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING | |
| def get_test_pipeline(self, model, tokenizer, processor): | |
| if isinstance(model.config, MBartConfig): | |
| src_lang, tgt_lang = list(tokenizer.lang_code_to_id.keys())[:2] | |
| translator = TranslationPipeline(model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang) | |
| else: | |
| translator = TranslationPipeline(model=model, tokenizer=tokenizer) | |
| return translator, ["Some string", "Some other text"] | |
| def run_pipeline_test(self, translator, _): | |
| outputs = translator("Some string") | |
| self.assertEqual(outputs, [{"translation_text": ANY(str)}]) | |
| outputs = translator(["Some string"]) | |
| self.assertEqual(outputs, [{"translation_text": ANY(str)}]) | |
| outputs = translator(["Some string", "other string"]) | |
| self.assertEqual(outputs, [{"translation_text": ANY(str)}, {"translation_text": ANY(str)}]) | |
| def test_small_model_pt(self): | |
| translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="pt") | |
| outputs = translator("This is a test string", max_length=20) | |
| self.assertEqual( | |
| outputs, | |
| [ | |
| { | |
| "translation_text": ( | |
| "Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide" | |
| " Beide Beide" | |
| ) | |
| } | |
| ], | |
| ) | |
| def test_small_model_tf(self): | |
| translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="tf") | |
| outputs = translator("This is a test string", max_length=20) | |
| self.assertEqual( | |
| outputs, | |
| [ | |
| { | |
| "translation_text": ( | |
| "Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide" | |
| " Beide Beide" | |
| ) | |
| } | |
| ], | |
| ) | |
| def test_en_to_de_pt(self): | |
| translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="pt") | |
| outputs = translator("This is a test string", max_length=20) | |
| self.assertEqual( | |
| outputs, | |
| [ | |
| { | |
| "translation_text": ( | |
| "monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine" | |
| " urine urine urine urine urine urine urine" | |
| ) | |
| } | |
| ], | |
| ) | |
| def test_en_to_de_tf(self): | |
| translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="tf") | |
| outputs = translator("This is a test string", max_length=20) | |
| self.assertEqual( | |
| outputs, | |
| [ | |
| { | |
| "translation_text": ( | |
| "monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine" | |
| " urine urine urine urine urine urine urine" | |
| ) | |
| } | |
| ], | |
| ) | |
| class TranslationNewFormatPipelineTests(unittest.TestCase): | |
| def test_default_translations(self): | |
| # We don't provide a default for this pair | |
| with self.assertRaises(ValueError): | |
| pipeline(task="translation_cn_to_ar") | |
| # but we do for this one | |
| translator = pipeline(task="translation_en_to_de") | |
| self.assertEqual(translator._preprocess_params["src_lang"], "en") | |
| self.assertEqual(translator._preprocess_params["tgt_lang"], "de") | |
| def test_multilingual_translation(self): | |
| model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") | |
| tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") | |
| translator = pipeline(task="translation", model=model, tokenizer=tokenizer) | |
| # Missing src_lang, tgt_lang | |
| with self.assertRaises(ValueError): | |
| translator("This is a test") | |
| outputs = translator("This is a test", src_lang="en_XX", tgt_lang="ar_AR") | |
| self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}]) | |
| outputs = translator("This is a test", src_lang="en_XX", tgt_lang="hi_IN") | |
| self.assertEqual(outputs, [{"translation_text": "यह एक परीक्षण है"}]) | |
| # src_lang, tgt_lang can be defined at pipeline call time | |
| translator = pipeline(task="translation", model=model, tokenizer=tokenizer, src_lang="en_XX", tgt_lang="ar_AR") | |
| outputs = translator("This is a test") | |
| self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}]) | |
| def test_translation_on_odd_language(self): | |
| model = "patrickvonplaten/t5-tiny-random" | |
| translator = pipeline(task="translation_cn_to_ar", model=model) | |
| self.assertEqual(translator._preprocess_params["src_lang"], "cn") | |
| self.assertEqual(translator._preprocess_params["tgt_lang"], "ar") | |
| def test_translation_default_language_selection(self): | |
| model = "patrickvonplaten/t5-tiny-random" | |
| with pytest.warns(UserWarning, match=r".*translation_en_to_de.*"): | |
| translator = pipeline(task="translation", model=model) | |
| self.assertEqual(translator.task, "translation_en_to_de") | |
| self.assertEqual(translator._preprocess_params["src_lang"], "en") | |
| self.assertEqual(translator._preprocess_params["tgt_lang"], "de") | |
| def test_translation_with_no_language_no_model_fails(self): | |
| with self.assertRaises(ValueError): | |
| pipeline(task="translation") | |