Spaces:
Paused
Paused
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import logging | |
| import os | |
| import sys | |
| import tempfile | |
| import unittest | |
| from pathlib import Path | |
| import datasets | |
| import numpy as np | |
| from huggingface_hub import HfFolder, Repository, create_repo, delete_repo | |
| from requests.exceptions import HTTPError | |
| from transformers import ( | |
| AutoModelForSequenceClassification, | |
| AutoTokenizer, | |
| DistilBertForSequenceClassification, | |
| TextClassificationPipeline, | |
| TFAutoModelForSequenceClassification, | |
| pipeline, | |
| ) | |
| from transformers.pipelines import PIPELINE_REGISTRY, get_task | |
| from transformers.pipelines.base import Pipeline, _pad | |
| from transformers.testing_utils import ( | |
| TOKEN, | |
| USER, | |
| CaptureLogger, | |
| RequestCounter, | |
| is_pipeline_test, | |
| is_staging_test, | |
| nested_simplify, | |
| require_tensorflow_probability, | |
| require_tf, | |
| require_torch, | |
| require_torch_gpu, | |
| require_torch_or_tf, | |
| slow, | |
| ) | |
| from transformers.utils import direct_transformers_import, is_tf_available, is_torch_available | |
| from transformers.utils import logging as transformers_logging | |
| sys.path.append(str(Path(__file__).parent.parent.parent / "utils")) | |
| from test_module.custom_pipeline import PairClassificationPipeline # noqa E402 | |
| logger = logging.getLogger(__name__) | |
| PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent.parent, "src/transformers") | |
| # Dynamically import the Transformers module to grab the attribute classes of the processor form their names. | |
| transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS) | |
| class ANY: | |
| def __init__(self, *_types): | |
| self._types = _types | |
| def __eq__(self, other): | |
| return isinstance(other, self._types) | |
| def __repr__(self): | |
| return f"ANY({', '.join(_type.__name__ for _type in self._types)})" | |
| class CommonPipelineTest(unittest.TestCase): | |
| def test_pipeline_iteration(self): | |
| from torch.utils.data import Dataset | |
| class MyDataset(Dataset): | |
| data = [ | |
| "This is a test", | |
| "This restaurant is great", | |
| "This restaurant is awful", | |
| ] | |
| def __len__(self): | |
| return 3 | |
| def __getitem__(self, i): | |
| return self.data[i] | |
| text_classifier = pipeline( | |
| task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt" | |
| ) | |
| dataset = MyDataset() | |
| for output in text_classifier(dataset): | |
| self.assertEqual(output, {"label": ANY(str), "score": ANY(float)}) | |
| def test_check_task_auto_inference(self): | |
| pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert") | |
| self.assertIsInstance(pipe, TextClassificationPipeline) | |
| def test_pipeline_batch_size_global(self): | |
| pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert") | |
| self.assertEqual(pipe._batch_size, None) | |
| self.assertEqual(pipe._num_workers, None) | |
| pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", batch_size=2, num_workers=1) | |
| self.assertEqual(pipe._batch_size, 2) | |
| self.assertEqual(pipe._num_workers, 1) | |
| def test_pipeline_pathlike(self): | |
| pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert") | |
| with tempfile.TemporaryDirectory() as d: | |
| pipe.save_pretrained(d) | |
| path = Path(d) | |
| newpipe = pipeline(task="text-classification", model=path) | |
| self.assertIsInstance(newpipe, TextClassificationPipeline) | |
| def test_pipeline_override(self): | |
| class MyPipeline(TextClassificationPipeline): | |
| pass | |
| text_classifier = pipeline(model="hf-internal-testing/tiny-random-distilbert", pipeline_class=MyPipeline) | |
| self.assertIsInstance(text_classifier, MyPipeline) | |
| def test_check_task(self): | |
| task = get_task("gpt2") | |
| self.assertEqual(task, "text-generation") | |
| with self.assertRaises(RuntimeError): | |
| # Wrong framework | |
| get_task("espnet/siddhana_slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best") | |
| def test_iterator_data(self): | |
| def data(n: int): | |
| for _ in range(n): | |
| yield "This is a test" | |
| pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert") | |
| results = [] | |
| for out in pipe(data(10)): | |
| self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504}) | |
| results.append(out) | |
| self.assertEqual(len(results), 10) | |
| # When using multiple workers on streamable data it should still work | |
| # This will force using `num_workers=1` with a warning for now. | |
| results = [] | |
| for out in pipe(data(10), num_workers=2): | |
| self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504}) | |
| results.append(out) | |
| self.assertEqual(len(results), 10) | |
| def test_iterator_data_tf(self): | |
| def data(n: int): | |
| for _ in range(n): | |
| yield "This is a test" | |
| pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", framework="tf") | |
| out = pipe("This is a test") | |
| results = [] | |
| for out in pipe(data(10)): | |
| self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504}) | |
| results.append(out) | |
| self.assertEqual(len(results), 10) | |
| def test_unbatch_attentions_hidden_states(self): | |
| model = DistilBertForSequenceClassification.from_pretrained( | |
| "hf-internal-testing/tiny-random-distilbert", output_hidden_states=True, output_attentions=True | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-distilbert") | |
| text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer) | |
| # Used to throw an error because `hidden_states` are a tuple of tensors | |
| # instead of the expected tensor. | |
| outputs = text_classifier(["This is great !"] * 20, batch_size=32) | |
| self.assertEqual(len(outputs), 20) | |
| class PipelineScikitCompatTest(unittest.TestCase): | |
| def test_pipeline_predict_pt(self): | |
| data = ["This is a test"] | |
| text_classifier = pipeline( | |
| task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt" | |
| ) | |
| expected_output = [{"label": ANY(str), "score": ANY(float)}] | |
| actual_output = text_classifier.predict(data) | |
| self.assertEqual(expected_output, actual_output) | |
| def test_pipeline_predict_tf(self): | |
| data = ["This is a test"] | |
| text_classifier = pipeline( | |
| task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf" | |
| ) | |
| expected_output = [{"label": ANY(str), "score": ANY(float)}] | |
| actual_output = text_classifier.predict(data) | |
| self.assertEqual(expected_output, actual_output) | |
| def test_pipeline_transform_pt(self): | |
| data = ["This is a test"] | |
| text_classifier = pipeline( | |
| task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt" | |
| ) | |
| expected_output = [{"label": ANY(str), "score": ANY(float)}] | |
| actual_output = text_classifier.transform(data) | |
| self.assertEqual(expected_output, actual_output) | |
| def test_pipeline_transform_tf(self): | |
| data = ["This is a test"] | |
| text_classifier = pipeline( | |
| task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf" | |
| ) | |
| expected_output = [{"label": ANY(str), "score": ANY(float)}] | |
| actual_output = text_classifier.transform(data) | |
| self.assertEqual(expected_output, actual_output) | |
| class PipelinePadTest(unittest.TestCase): | |
| def test_pipeline_padding(self): | |
| import torch | |
| items = [ | |
| { | |
| "label": "label1", | |
| "input_ids": torch.LongTensor([[1, 23, 24, 2]]), | |
| "attention_mask": torch.LongTensor([[0, 1, 1, 0]]), | |
| }, | |
| { | |
| "label": "label2", | |
| "input_ids": torch.LongTensor([[1, 23, 24, 43, 44, 2]]), | |
| "attention_mask": torch.LongTensor([[0, 1, 1, 1, 1, 0]]), | |
| }, | |
| ] | |
| self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"]) | |
| self.assertTrue( | |
| torch.allclose( | |
| _pad(items, "input_ids", 10, "right"), | |
| torch.LongTensor([[1, 23, 24, 2, 10, 10], [1, 23, 24, 43, 44, 2]]), | |
| ) | |
| ) | |
| self.assertTrue( | |
| torch.allclose( | |
| _pad(items, "input_ids", 10, "left"), | |
| torch.LongTensor([[10, 10, 1, 23, 24, 2], [1, 23, 24, 43, 44, 2]]), | |
| ) | |
| ) | |
| self.assertTrue( | |
| torch.allclose( | |
| _pad(items, "attention_mask", 0, "right"), torch.LongTensor([[0, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 0]]) | |
| ) | |
| ) | |
| def test_pipeline_image_padding(self): | |
| import torch | |
| items = [ | |
| { | |
| "label": "label1", | |
| "pixel_values": torch.zeros((1, 3, 10, 10)), | |
| }, | |
| { | |
| "label": "label2", | |
| "pixel_values": torch.zeros((1, 3, 10, 10)), | |
| }, | |
| ] | |
| self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"]) | |
| self.assertTrue( | |
| torch.allclose( | |
| _pad(items, "pixel_values", 10, "right"), | |
| torch.zeros((2, 3, 10, 10)), | |
| ) | |
| ) | |
| def test_pipeline_offset_mapping(self): | |
| import torch | |
| items = [ | |
| { | |
| "offset_mappings": torch.zeros([1, 11, 2], dtype=torch.long), | |
| }, | |
| { | |
| "offset_mappings": torch.zeros([1, 4, 2], dtype=torch.long), | |
| }, | |
| ] | |
| self.assertTrue( | |
| torch.allclose( | |
| _pad(items, "offset_mappings", 0, "right"), | |
| torch.zeros((2, 11, 2), dtype=torch.long), | |
| ), | |
| ) | |
| class PipelineUtilsTest(unittest.TestCase): | |
| def test_pipeline_dataset(self): | |
| from transformers.pipelines.pt_utils import PipelineDataset | |
| dummy_dataset = [0, 1, 2, 3] | |
| def add(number, extra=0): | |
| return number + extra | |
| dataset = PipelineDataset(dummy_dataset, add, {"extra": 2}) | |
| self.assertEqual(len(dataset), 4) | |
| outputs = [dataset[i] for i in range(4)] | |
| self.assertEqual(outputs, [2, 3, 4, 5]) | |
| def test_pipeline_iterator(self): | |
| from transformers.pipelines.pt_utils import PipelineIterator | |
| dummy_dataset = [0, 1, 2, 3] | |
| def add(number, extra=0): | |
| return number + extra | |
| dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}) | |
| self.assertEqual(len(dataset), 4) | |
| outputs = list(dataset) | |
| self.assertEqual(outputs, [2, 3, 4, 5]) | |
| def test_pipeline_iterator_no_len(self): | |
| from transformers.pipelines.pt_utils import PipelineIterator | |
| def dummy_dataset(): | |
| for i in range(4): | |
| yield i | |
| def add(number, extra=0): | |
| return number + extra | |
| dataset = PipelineIterator(dummy_dataset(), add, {"extra": 2}) | |
| with self.assertRaises(TypeError): | |
| len(dataset) | |
| outputs = list(dataset) | |
| self.assertEqual(outputs, [2, 3, 4, 5]) | |
| def test_pipeline_batch_unbatch_iterator(self): | |
| from transformers.pipelines.pt_utils import PipelineIterator | |
| dummy_dataset = [{"id": [0, 1, 2]}, {"id": [3]}] | |
| def add(number, extra=0): | |
| return {"id": [i + extra for i in number["id"]]} | |
| dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3) | |
| outputs = list(dataset) | |
| self.assertEqual(outputs, [{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}]) | |
| def test_pipeline_batch_unbatch_iterator_tensors(self): | |
| import torch | |
| from transformers.pipelines.pt_utils import PipelineIterator | |
| dummy_dataset = [{"id": torch.LongTensor([[10, 20], [0, 1], [0, 2]])}, {"id": torch.LongTensor([[3]])}] | |
| def add(number, extra=0): | |
| return {"id": number["id"] + extra} | |
| dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3) | |
| outputs = list(dataset) | |
| self.assertEqual( | |
| nested_simplify(outputs), [{"id": [[12, 22]]}, {"id": [[2, 3]]}, {"id": [[2, 4]]}, {"id": [[5]]}] | |
| ) | |
| def test_pipeline_chunk_iterator(self): | |
| from transformers.pipelines.pt_utils import PipelineChunkIterator | |
| def preprocess_chunk(n: int): | |
| for i in range(n): | |
| yield i | |
| dataset = [2, 3] | |
| dataset = PipelineChunkIterator(dataset, preprocess_chunk, {}, loader_batch_size=3) | |
| outputs = list(dataset) | |
| self.assertEqual(outputs, [0, 1, 0, 1, 2]) | |
| def test_pipeline_pack_iterator(self): | |
| from transformers.pipelines.pt_utils import PipelinePackIterator | |
| def pack(item): | |
| return {"id": item["id"] + 1, "is_last": item["is_last"]} | |
| dataset = [ | |
| {"id": 0, "is_last": False}, | |
| {"id": 1, "is_last": True}, | |
| {"id": 0, "is_last": False}, | |
| {"id": 1, "is_last": False}, | |
| {"id": 2, "is_last": True}, | |
| ] | |
| dataset = PipelinePackIterator(dataset, pack, {}) | |
| outputs = list(dataset) | |
| self.assertEqual( | |
| outputs, | |
| [ | |
| [ | |
| {"id": 1}, | |
| {"id": 2}, | |
| ], | |
| [ | |
| {"id": 1}, | |
| {"id": 2}, | |
| {"id": 3}, | |
| ], | |
| ], | |
| ) | |
| def test_pipeline_pack_unbatch_iterator(self): | |
| from transformers.pipelines.pt_utils import PipelinePackIterator | |
| dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, True, False]}, {"id": [3], "is_last": [True]}] | |
| def add(number, extra=0): | |
| return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]} | |
| dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3) | |
| outputs = list(dataset) | |
| self.assertEqual(outputs, [[{"id": 2}, {"id": 3}], [{"id": 4}, {"id": 5}]]) | |
| # is_false Across batch | |
| dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, False, False]}, {"id": [3], "is_last": [True]}] | |
| def add(number, extra=0): | |
| return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]} | |
| dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3) | |
| outputs = list(dataset) | |
| self.assertEqual(outputs, [[{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}]]) | |
| def test_pipeline_negative_device(self): | |
| # To avoid regressing, pipeline used to accept device=-1 | |
| classifier = pipeline("text-generation", "hf-internal-testing/tiny-random-bert", device=-1) | |
| expected_output = [{"generated_text": ANY(str)}] | |
| actual_output = classifier("Test input.") | |
| self.assertEqual(expected_output, actual_output) | |
| def test_load_default_pipelines_pt(self): | |
| import torch | |
| from transformers.pipelines import SUPPORTED_TASKS | |
| set_seed_fn = lambda: torch.manual_seed(0) # noqa: E731 | |
| for task in SUPPORTED_TASKS.keys(): | |
| if task == "table-question-answering": | |
| # test table in seperate test due to more dependencies | |
| continue | |
| self.check_default_pipeline(task, "pt", set_seed_fn, self.check_models_equal_pt) | |
| # clean-up as much as possible GPU memory occupied by PyTorch | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_load_default_pipelines_tf(self): | |
| import tensorflow as tf | |
| from transformers.pipelines import SUPPORTED_TASKS | |
| set_seed_fn = lambda: tf.random.set_seed(0) # noqa: E731 | |
| for task in SUPPORTED_TASKS.keys(): | |
| if task == "table-question-answering": | |
| # test table in seperate test due to more dependencies | |
| continue | |
| self.check_default_pipeline(task, "tf", set_seed_fn, self.check_models_equal_tf) | |
| # clean-up as much as possible GPU memory occupied by PyTorch | |
| gc.collect() | |
| def test_load_default_pipelines_pt_table_qa(self): | |
| import torch | |
| set_seed_fn = lambda: torch.manual_seed(0) # noqa: E731 | |
| self.check_default_pipeline("table-question-answering", "pt", set_seed_fn, self.check_models_equal_pt) | |
| # clean-up as much as possible GPU memory occupied by PyTorch | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_pipeline_cuda(self): | |
| pipe = pipeline("text-generation", device="cuda") | |
| _ = pipe("Hello") | |
| def test_pipeline_cuda_indexed(self): | |
| pipe = pipeline("text-generation", device="cuda:0") | |
| _ = pipe("Hello") | |
| def test_load_default_pipelines_tf_table_qa(self): | |
| import tensorflow as tf | |
| set_seed_fn = lambda: tf.random.set_seed(0) # noqa: E731 | |
| self.check_default_pipeline("table-question-answering", "tf", set_seed_fn, self.check_models_equal_tf) | |
| # clean-up as much as possible GPU memory occupied by PyTorch | |
| gc.collect() | |
| def check_default_pipeline(self, task, framework, set_seed_fn, check_models_equal_fn): | |
| from transformers.pipelines import SUPPORTED_TASKS, pipeline | |
| task_dict = SUPPORTED_TASKS[task] | |
| # test to compare pipeline to manually loading the respective model | |
| model = None | |
| relevant_auto_classes = task_dict[framework] | |
| if len(relevant_auto_classes) == 0: | |
| # task has no default | |
| logger.debug(f"{task} in {framework} has no default") | |
| return | |
| # by default use first class | |
| auto_model_cls = relevant_auto_classes[0] | |
| # retrieve correct model ids | |
| if task == "translation": | |
| # special case for translation pipeline which has multiple languages | |
| model_ids = [] | |
| revisions = [] | |
| tasks = [] | |
| for translation_pair in task_dict["default"].keys(): | |
| model_id, revision = task_dict["default"][translation_pair]["model"][framework] | |
| model_ids.append(model_id) | |
| revisions.append(revision) | |
| tasks.append(task + f"_{'_to_'.join(translation_pair)}") | |
| else: | |
| # normal case - non-translation pipeline | |
| model_id, revision = task_dict["default"]["model"][framework] | |
| model_ids = [model_id] | |
| revisions = [revision] | |
| tasks = [task] | |
| # check for equality | |
| for model_id, revision, task in zip(model_ids, revisions, tasks): | |
| # load default model | |
| try: | |
| set_seed_fn() | |
| model = auto_model_cls.from_pretrained(model_id, revision=revision) | |
| except ValueError: | |
| # first auto class is possible not compatible with model, go to next model class | |
| auto_model_cls = relevant_auto_classes[1] | |
| set_seed_fn() | |
| model = auto_model_cls.from_pretrained(model_id, revision=revision) | |
| # load default pipeline | |
| set_seed_fn() | |
| default_pipeline = pipeline(task, framework=framework) | |
| # compare pipeline model with default model | |
| models_are_equal = check_models_equal_fn(default_pipeline.model, model) | |
| self.assertTrue(models_are_equal, f"{task} model doesn't match pipeline.") | |
| logger.debug(f"{task} in {framework} succeeded with {model_id}.") | |
| def check_models_equal_pt(self, model1, model2): | |
| models_are_equal = True | |
| for model1_p, model2_p in zip(model1.parameters(), model2.parameters()): | |
| if model1_p.data.ne(model2_p.data).sum() > 0: | |
| models_are_equal = False | |
| return models_are_equal | |
| def check_models_equal_tf(self, model1, model2): | |
| models_are_equal = True | |
| for model1_p, model2_p in zip(model1.weights, model2.weights): | |
| if np.abs(model1_p.numpy() - model2_p.numpy()).sum() > 1e-5: | |
| models_are_equal = False | |
| return models_are_equal | |
| class CustomPipeline(Pipeline): | |
| def _sanitize_parameters(self, **kwargs): | |
| preprocess_kwargs = {} | |
| if "maybe_arg" in kwargs: | |
| preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"] | |
| return preprocess_kwargs, {}, {} | |
| def preprocess(self, text, maybe_arg=2): | |
| input_ids = self.tokenizer(text, return_tensors="pt") | |
| return input_ids | |
| def _forward(self, model_inputs): | |
| outputs = self.model(**model_inputs) | |
| return outputs | |
| def postprocess(self, model_outputs): | |
| return model_outputs["logits"].softmax(-1).numpy() | |
| class CustomPipelineTest(unittest.TestCase): | |
| def test_warning_logs(self): | |
| transformers_logging.set_verbosity_debug() | |
| logger_ = transformers_logging.get_logger("transformers.pipelines.base") | |
| alias = "text-classification" | |
| # Get the original task, so we can restore it at the end. | |
| # (otherwise the subsequential tests in `TextClassificationPipelineTests` will fail) | |
| _, original_task, _ = PIPELINE_REGISTRY.check_task(alias) | |
| try: | |
| with CaptureLogger(logger_) as cm: | |
| PIPELINE_REGISTRY.register_pipeline(alias, PairClassificationPipeline) | |
| self.assertIn(f"{alias} is already registered", cm.out) | |
| finally: | |
| # restore | |
| PIPELINE_REGISTRY.supported_tasks[alias] = original_task | |
| def test_register_pipeline(self): | |
| PIPELINE_REGISTRY.register_pipeline( | |
| "custom-text-classification", | |
| pipeline_class=PairClassificationPipeline, | |
| pt_model=AutoModelForSequenceClassification if is_torch_available() else None, | |
| tf_model=TFAutoModelForSequenceClassification if is_tf_available() else None, | |
| default={"pt": "hf-internal-testing/tiny-random-distilbert"}, | |
| type="text", | |
| ) | |
| assert "custom-text-classification" in PIPELINE_REGISTRY.get_supported_tasks() | |
| _, task_def, _ = PIPELINE_REGISTRY.check_task("custom-text-classification") | |
| self.assertEqual(task_def["pt"], (AutoModelForSequenceClassification,) if is_torch_available() else ()) | |
| self.assertEqual(task_def["tf"], (TFAutoModelForSequenceClassification,) if is_tf_available() else ()) | |
| self.assertEqual(task_def["type"], "text") | |
| self.assertEqual(task_def["impl"], PairClassificationPipeline) | |
| self.assertEqual(task_def["default"], {"model": {"pt": "hf-internal-testing/tiny-random-distilbert"}}) | |
| # Clean registry for next tests. | |
| del PIPELINE_REGISTRY.supported_tasks["custom-text-classification"] | |
| def test_dynamic_pipeline(self): | |
| PIPELINE_REGISTRY.register_pipeline( | |
| "pair-classification", | |
| pipeline_class=PairClassificationPipeline, | |
| pt_model=AutoModelForSequenceClassification if is_torch_available() else None, | |
| tf_model=TFAutoModelForSequenceClassification if is_tf_available() else None, | |
| ) | |
| classifier = pipeline("pair-classification", model="hf-internal-testing/tiny-random-bert") | |
| # Clean registry as we won't need the pipeline to be in it for the rest to work. | |
| del PIPELINE_REGISTRY.supported_tasks["pair-classification"] | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| classifier.save_pretrained(tmp_dir) | |
| # checks | |
| self.assertDictEqual( | |
| classifier.model.config.custom_pipelines, | |
| { | |
| "pair-classification": { | |
| "impl": "custom_pipeline.PairClassificationPipeline", | |
| "pt": ("AutoModelForSequenceClassification",) if is_torch_available() else (), | |
| "tf": ("TFAutoModelForSequenceClassification",) if is_tf_available() else (), | |
| } | |
| }, | |
| ) | |
| # Fails if the user forget to pass along `trust_remote_code=True` | |
| with self.assertRaises(ValueError): | |
| _ = pipeline(model=tmp_dir) | |
| new_classifier = pipeline(model=tmp_dir, trust_remote_code=True) | |
| # Using trust_remote_code=False forces the traditional pipeline tag | |
| old_classifier = pipeline("text-classification", model=tmp_dir, trust_remote_code=False) | |
| # Can't make an isinstance check because the new_classifier is from the PairClassificationPipeline class of a | |
| # dynamic module | |
| self.assertEqual(new_classifier.__class__.__name__, "PairClassificationPipeline") | |
| self.assertEqual(new_classifier.task, "pair-classification") | |
| results = new_classifier("I hate you", second_text="I love you") | |
| self.assertDictEqual( | |
| nested_simplify(results), | |
| {"label": "LABEL_0", "score": 0.505, "logits": [-0.003, -0.024]}, | |
| ) | |
| self.assertEqual(old_classifier.__class__.__name__, "TextClassificationPipeline") | |
| self.assertEqual(old_classifier.task, "text-classification") | |
| results = old_classifier("I hate you", text_pair="I love you") | |
| self.assertListEqual( | |
| nested_simplify(results), | |
| [{"label": "LABEL_0", "score": 0.505}], | |
| ) | |
| def test_cached_pipeline_has_minimum_calls_to_head(self): | |
| # Make sure we have cached the pipeline. | |
| _ = pipeline("text-classification", model="hf-internal-testing/tiny-random-bert") | |
| with RequestCounter() as counter: | |
| _ = pipeline("text-classification", model="hf-internal-testing/tiny-random-bert") | |
| self.assertEqual(counter.get_request_count, 0) | |
| self.assertEqual(counter.head_request_count, 1) | |
| self.assertEqual(counter.other_request_count, 0) | |
| def test_chunk_pipeline_batching_single_file(self): | |
| # Make sure we have cached the pipeline. | |
| pipe = pipeline(model="hf-internal-testing/tiny-random-Wav2Vec2ForCTC") | |
| ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") | |
| audio = ds[40]["audio"]["array"] | |
| pipe = pipeline(model="hf-internal-testing/tiny-random-Wav2Vec2ForCTC") | |
| # For some reason scoping doesn't work if not using `self.` | |
| self.COUNT = 0 | |
| forward = pipe.model.forward | |
| def new_forward(*args, **kwargs): | |
| self.COUNT += 1 | |
| return forward(*args, **kwargs) | |
| pipe.model.forward = new_forward | |
| for out in pipe(audio, return_timestamps="char", chunk_length_s=3, stride_length_s=[1, 1], batch_size=1024): | |
| pass | |
| self.assertEqual(self.COUNT, 1) | |
| class DynamicPipelineTester(unittest.TestCase): | |
| vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "I", "love", "hate", "you"] | |
| def setUpClass(cls): | |
| cls._token = TOKEN | |
| HfFolder.save_token(TOKEN) | |
| def tearDownClass(cls): | |
| try: | |
| delete_repo(token=cls._token, repo_id="test-dynamic-pipeline") | |
| except HTTPError: | |
| pass | |
| def test_push_to_hub_dynamic_pipeline(self): | |
| from transformers import BertConfig, BertForSequenceClassification, BertTokenizer | |
| PIPELINE_REGISTRY.register_pipeline( | |
| "pair-classification", | |
| pipeline_class=PairClassificationPipeline, | |
| pt_model=AutoModelForSequenceClassification, | |
| ) | |
| config = BertConfig( | |
| vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 | |
| ) | |
| model = BertForSequenceClassification(config).eval() | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| create_repo(f"{USER}/test-dynamic-pipeline", token=self._token) | |
| repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-pipeline", token=self._token) | |
| vocab_file = os.path.join(tmp_dir, "vocab.txt") | |
| with open(vocab_file, "w", encoding="utf-8") as vocab_writer: | |
| vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) | |
| tokenizer = BertTokenizer(vocab_file) | |
| classifier = pipeline("pair-classification", model=model, tokenizer=tokenizer) | |
| # Clean registry as we won't need the pipeline to be in it for the rest to work. | |
| del PIPELINE_REGISTRY.supported_tasks["pair-classification"] | |
| classifier.save_pretrained(tmp_dir) | |
| # checks | |
| self.assertDictEqual( | |
| classifier.model.config.custom_pipelines, | |
| { | |
| "pair-classification": { | |
| "impl": "custom_pipeline.PairClassificationPipeline", | |
| "pt": ("AutoModelForSequenceClassification",), | |
| "tf": (), | |
| } | |
| }, | |
| ) | |
| repo.push_to_hub() | |
| # Fails if the user forget to pass along `trust_remote_code=True` | |
| with self.assertRaises(ValueError): | |
| _ = pipeline(model=f"{USER}/test-dynamic-pipeline") | |
| new_classifier = pipeline(model=f"{USER}/test-dynamic-pipeline", trust_remote_code=True) | |
| # Can't make an isinstance check because the new_classifier is from the PairClassificationPipeline class of a | |
| # dynamic module | |
| self.assertEqual(new_classifier.__class__.__name__, "PairClassificationPipeline") | |
| results = classifier("I hate you", second_text="I love you") | |
| new_results = new_classifier("I hate you", second_text="I love you") | |
| self.assertDictEqual(nested_simplify(results), nested_simplify(new_results)) | |
| # Using trust_remote_code=False forces the traditional pipeline tag | |
| old_classifier = pipeline( | |
| "text-classification", model=f"{USER}/test-dynamic-pipeline", trust_remote_code=False | |
| ) | |
| self.assertEqual(old_classifier.__class__.__name__, "TextClassificationPipeline") | |
| self.assertEqual(old_classifier.task, "text-classification") | |
| new_results = old_classifier("I hate you", text_pair="I love you") | |
| self.assertListEqual( | |
| nested_simplify([{"label": results["label"], "score": results["score"]}]), nested_simplify(new_results) | |
| ) | |