Spaces:
Paused
Paused
| import math | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from TTS.tts.layers.generic.normalization import LayerNorm, LayerNorm2 | |
| class RelativePositionMultiHeadAttention(nn.Module): | |
| """Multi-head attention with Relative Positional embedding. | |
| https://arxiv.org/pdf/1809.04281.pdf | |
| It learns positional embeddings for a window of neighbours. For keys and values, | |
| it learns different set of embeddings. Key embeddings are agregated with the attention | |
| scores and value embeddings are aggregated with the output. | |
| Note: | |
| Example with relative attention window size 2 | |
| - input = [a, b, c, d, e] | |
| - rel_attn_embeddings = [e(t-2), e(t-1), e(t+1), e(t+2)] | |
| So it learns 4 embedding vectors (in total 8) separately for key and value vectors. | |
| Considering the input c | |
| - e(t-2) corresponds to c -> a | |
| - e(t-2) corresponds to c -> b | |
| - e(t-2) corresponds to c -> d | |
| - e(t-2) corresponds to c -> e | |
| These embeddings are shared among different time steps. So input a, b, d and e also uses | |
| the same embeddings. | |
| Embeddings are ignored when the relative window is out of limit for the first and the last | |
| n items. | |
| Args: | |
| channels (int): input and inner layer channels. | |
| out_channels (int): output channels. | |
| num_heads (int): number of attention heads. | |
| rel_attn_window_size (int, optional): relation attention window size. | |
| If 4, for each time step next and previous 4 time steps are attended. | |
| If default, relative encoding is disabled and it is a regular transformer. | |
| Defaults to None. | |
| heads_share (bool, optional): [description]. Defaults to True. | |
| dropout_p (float, optional): dropout rate. Defaults to 0.. | |
| input_length (int, optional): intput length for positional encoding. Defaults to None. | |
| proximal_bias (bool, optional): enable/disable proximal bias as in the paper. Defaults to False. | |
| proximal_init (bool, optional): enable/disable poximal init as in the paper. | |
| Init key and query layer weights the same. Defaults to False. | |
| """ | |
| def __init__( | |
| self, | |
| channels, | |
| out_channels, | |
| num_heads, | |
| rel_attn_window_size=None, | |
| heads_share=True, | |
| dropout_p=0.0, | |
| input_length=None, | |
| proximal_bias=False, | |
| proximal_init=False, | |
| ): | |
| super().__init__() | |
| assert channels % num_heads == 0, " [!] channels should be divisible by num_heads." | |
| # class attributes | |
| self.channels = channels | |
| self.out_channels = out_channels | |
| self.num_heads = num_heads | |
| self.rel_attn_window_size = rel_attn_window_size | |
| self.heads_share = heads_share | |
| self.input_length = input_length | |
| self.proximal_bias = proximal_bias | |
| self.dropout_p = dropout_p | |
| self.attn = None | |
| # query, key, value layers | |
| self.k_channels = channels // num_heads | |
| self.conv_q = nn.Conv1d(channels, channels, 1) | |
| self.conv_k = nn.Conv1d(channels, channels, 1) | |
| self.conv_v = nn.Conv1d(channels, channels, 1) | |
| # output layers | |
| self.conv_o = nn.Conv1d(channels, out_channels, 1) | |
| self.dropout = nn.Dropout(dropout_p) | |
| # relative positional encoding layers | |
| if rel_attn_window_size is not None: | |
| n_heads_rel = 1 if heads_share else num_heads | |
| rel_stddev = self.k_channels**-0.5 | |
| emb_rel_k = nn.Parameter( | |
| torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev | |
| ) | |
| emb_rel_v = nn.Parameter( | |
| torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev | |
| ) | |
| self.register_parameter("emb_rel_k", emb_rel_k) | |
| self.register_parameter("emb_rel_v", emb_rel_v) | |
| # init layers | |
| nn.init.xavier_uniform_(self.conv_q.weight) | |
| nn.init.xavier_uniform_(self.conv_k.weight) | |
| # proximal bias | |
| if proximal_init: | |
| self.conv_k.weight.data.copy_(self.conv_q.weight.data) | |
| self.conv_k.bias.data.copy_(self.conv_q.bias.data) | |
| nn.init.xavier_uniform_(self.conv_v.weight) | |
| def forward(self, x, c, attn_mask=None): | |
| """ | |
| Shapes: | |
| - x: :math:`[B, C, T]` | |
| - c: :math:`[B, C, T]` | |
| - attn_mask: :math:`[B, 1, T, T]` | |
| """ | |
| q = self.conv_q(x) | |
| k = self.conv_k(c) | |
| v = self.conv_v(c) | |
| x, self.attn = self.attention(q, k, v, mask=attn_mask) | |
| x = self.conv_o(x) | |
| return x | |
| def attention(self, query, key, value, mask=None): | |
| # reshape [b, d, t] -> [b, n_h, t, d_k] | |
| b, d, t_s, t_t = (*key.size(), query.size(2)) | |
| query = query.view(b, self.num_heads, self.k_channels, t_t).transpose(2, 3) | |
| key = key.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3) | |
| value = value.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3) | |
| # compute raw attention scores | |
| scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels) | |
| # relative positional encoding for scores | |
| if self.rel_attn_window_size is not None: | |
| assert t_s == t_t, "Relative attention is only available for self-attention." | |
| # get relative key embeddings | |
| key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) | |
| rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings) | |
| rel_logits = self._relative_position_to_absolute_position(rel_logits) | |
| scores_local = rel_logits / math.sqrt(self.k_channels) | |
| scores = scores + scores_local | |
| # proximan bias | |
| if self.proximal_bias: | |
| assert t_s == t_t, "Proximal bias is only available for self-attention." | |
| scores = scores + self._attn_proximity_bias(t_s).to(device=scores.device, dtype=scores.dtype) | |
| # attention score masking | |
| if mask is not None: | |
| # add small value to prevent oor error. | |
| scores = scores.masked_fill(mask == 0, -1e4) | |
| if self.input_length is not None: | |
| block_mask = torch.ones_like(scores).triu(-1 * self.input_length).tril(self.input_length) | |
| scores = scores * block_mask + -1e4 * (1 - block_mask) | |
| # attention score normalization | |
| p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] | |
| # apply dropout to attention weights | |
| p_attn = self.dropout(p_attn) | |
| # compute output | |
| output = torch.matmul(p_attn, value) | |
| # relative positional encoding for values | |
| if self.rel_attn_window_size is not None: | |
| relative_weights = self._absolute_position_to_relative_position(p_attn) | |
| value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) | |
| output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) | |
| output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] | |
| return output, p_attn | |
| def _matmul_with_relative_values(p_attn, re): | |
| """ | |
| Args: | |
| p_attn (Tensor): attention weights. | |
| re (Tensor): relative value embedding vector. (a_(i,j)^V) | |
| Shapes: | |
| -p_attn: :math:`[B, H, T, V]` | |
| -re: :math:`[H or 1, V, D]` | |
| -logits: :math:`[B, H, T, D]` | |
| """ | |
| logits = torch.matmul(p_attn, re.unsqueeze(0)) | |
| return logits | |
| def _matmul_with_relative_keys(query, re): | |
| """ | |
| Args: | |
| query (Tensor): batch of query vectors. (x*W^Q) | |
| re (Tensor): relative key embedding vector. (a_(i,j)^K) | |
| Shapes: | |
| - query: :math:`[B, H, T, D]` | |
| - re: :math:`[H or 1, V, D]` | |
| - logits: :math:`[B, H, T, V]` | |
| """ | |
| # logits = torch.einsum('bhld, kmd -> bhlm', [query, re.to(query.dtype)]) | |
| logits = torch.matmul(query, re.unsqueeze(0).transpose(-2, -1)) | |
| return logits | |
| def _get_relative_embeddings(self, relative_embeddings, length): | |
| """Convert embedding vestors to a tensor of embeddings""" | |
| # Pad first before slice to avoid using cond ops. | |
| pad_length = max(length - (self.rel_attn_window_size + 1), 0) | |
| slice_start_position = max((self.rel_attn_window_size + 1) - length, 0) | |
| slice_end_position = slice_start_position + 2 * length - 1 | |
| if pad_length > 0: | |
| padded_relative_embeddings = F.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0]) | |
| else: | |
| padded_relative_embeddings = relative_embeddings | |
| used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position] | |
| return used_relative_embeddings | |
| def _relative_position_to_absolute_position(x): | |
| """Converts tensor from relative to absolute indexing for local attention. | |
| Shapes: | |
| x: :math:`[B, C, T, 2 * T - 1]` | |
| Returns: | |
| A Tensor of shape :math:`[B, C, T, T]` | |
| """ | |
| batch, heads, length, _ = x.size() | |
| # Pad to shift from relative to absolute indexing. | |
| x = F.pad(x, [0, 1, 0, 0, 0, 0, 0, 0]) | |
| # Pad extra elements so to add up to shape (len+1, 2*len-1). | |
| x_flat = x.view([batch, heads, length * 2 * length]) | |
| x_flat = F.pad(x_flat, [0, length - 1, 0, 0, 0, 0]) | |
| # Reshape and slice out the padded elements. | |
| x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :] | |
| return x_final | |
| def _absolute_position_to_relative_position(x): | |
| """ | |
| Shapes: | |
| - x: :math:`[B, C, T, T]` | |
| - ret: :math:`[B, C, T, 2*T-1]` | |
| """ | |
| batch, heads, length, _ = x.size() | |
| # padd along column | |
| x = F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0]) | |
| x_flat = x.view([batch, heads, length**2 + length * (length - 1)]) | |
| # add 0's in the beginning that will skew the elements after reshape | |
| x_flat = F.pad(x_flat, [length, 0, 0, 0, 0, 0]) | |
| x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] | |
| return x_final | |
| def _attn_proximity_bias(length): | |
| """Produce an attention mask that discourages distant | |
| attention values. | |
| Args: | |
| length (int): an integer scalar. | |
| Returns: | |
| a Tensor with shape :math:`[1, 1, T, T]` | |
| """ | |
| # L | |
| r = torch.arange(length, dtype=torch.float32) | |
| # L x L | |
| diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) | |
| # scale mask values | |
| diff = -torch.log1p(torch.abs(diff)) | |
| # 1 x 1 x L x L | |
| return diff.unsqueeze(0).unsqueeze(0) | |
| class FeedForwardNetwork(nn.Module): | |
| """Feed Forward Inner layers for Transformer. | |
| Args: | |
| in_channels (int): input tensor channels. | |
| out_channels (int): output tensor channels. | |
| hidden_channels (int): inner layers hidden channels. | |
| kernel_size (int): conv1d filter kernel size. | |
| dropout_p (float, optional): dropout rate. Defaults to 0. | |
| """ | |
| def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dropout_p=0.0, causal=False): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.dropout_p = dropout_p | |
| if causal: | |
| self.padding = self._causal_padding | |
| else: | |
| self.padding = self._same_padding | |
| self.conv_1 = nn.Conv1d(in_channels, hidden_channels, kernel_size) | |
| self.conv_2 = nn.Conv1d(hidden_channels, out_channels, kernel_size) | |
| self.dropout = nn.Dropout(dropout_p) | |
| def forward(self, x, x_mask): | |
| x = self.conv_1(self.padding(x * x_mask)) | |
| x = torch.relu(x) | |
| x = self.dropout(x) | |
| x = self.conv_2(self.padding(x * x_mask)) | |
| return x * x_mask | |
| def _causal_padding(self, x): | |
| if self.kernel_size == 1: | |
| return x | |
| pad_l = self.kernel_size - 1 | |
| pad_r = 0 | |
| padding = [[0, 0], [0, 0], [pad_l, pad_r]] | |
| x = F.pad(x, self._pad_shape(padding)) | |
| return x | |
| def _same_padding(self, x): | |
| if self.kernel_size == 1: | |
| return x | |
| pad_l = (self.kernel_size - 1) // 2 | |
| pad_r = self.kernel_size // 2 | |
| padding = [[0, 0], [0, 0], [pad_l, pad_r]] | |
| x = F.pad(x, self._pad_shape(padding)) | |
| return x | |
| def _pad_shape(padding): | |
| l = padding[::-1] | |
| pad_shape = [item for sublist in l for item in sublist] | |
| return pad_shape | |
| class RelativePositionTransformer(nn.Module): | |
| """Transformer with Relative Potional Encoding. | |
| https://arxiv.org/abs/1803.02155 | |
| Args: | |
| in_channels (int): number of channels of the input tensor. | |
| out_chanels (int): number of channels of the output tensor. | |
| hidden_channels (int): model hidden channels. | |
| hidden_channels_ffn (int): hidden channels of FeedForwardNetwork. | |
| num_heads (int): number of attention heads. | |
| num_layers (int): number of transformer layers. | |
| kernel_size (int, optional): kernel size of feed-forward inner layers. Defaults to 1. | |
| dropout_p (float, optional): dropout rate for self-attention and feed-forward inner layers_per_stack. Defaults to 0. | |
| rel_attn_window_size (int, optional): relation attention window size. | |
| If 4, for each time step next and previous 4 time steps are attended. | |
| If default, relative encoding is disabled and it is a regular transformer. | |
| Defaults to None. | |
| input_length (int, optional): input lenght to limit position encoding. Defaults to None. | |
| layer_norm_type (str, optional): type "1" uses torch tensor operations and type "2" uses torch layer_norm | |
| primitive. Use type "2", type "1: is for backward compat. Defaults to "1". | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| hidden_channels: int, | |
| hidden_channels_ffn: int, | |
| num_heads: int, | |
| num_layers: int, | |
| kernel_size=1, | |
| dropout_p=0.0, | |
| rel_attn_window_size: int = None, | |
| input_length: int = None, | |
| layer_norm_type: str = "1", | |
| ): | |
| super().__init__() | |
| self.hidden_channels = hidden_channels | |
| self.hidden_channels_ffn = hidden_channels_ffn | |
| self.num_heads = num_heads | |
| self.num_layers = num_layers | |
| self.kernel_size = kernel_size | |
| self.dropout_p = dropout_p | |
| self.rel_attn_window_size = rel_attn_window_size | |
| self.dropout = nn.Dropout(dropout_p) | |
| self.attn_layers = nn.ModuleList() | |
| self.norm_layers_1 = nn.ModuleList() | |
| self.ffn_layers = nn.ModuleList() | |
| self.norm_layers_2 = nn.ModuleList() | |
| for idx in range(self.num_layers): | |
| self.attn_layers.append( | |
| RelativePositionMultiHeadAttention( | |
| hidden_channels if idx != 0 else in_channels, | |
| hidden_channels, | |
| num_heads, | |
| rel_attn_window_size=rel_attn_window_size, | |
| dropout_p=dropout_p, | |
| input_length=input_length, | |
| ) | |
| ) | |
| if layer_norm_type == "1": | |
| self.norm_layers_1.append(LayerNorm(hidden_channels)) | |
| elif layer_norm_type == "2": | |
| self.norm_layers_1.append(LayerNorm2(hidden_channels)) | |
| else: | |
| raise ValueError(" [!] Unknown layer norm type") | |
| if hidden_channels != out_channels and (idx + 1) == self.num_layers: | |
| self.proj = nn.Conv1d(hidden_channels, out_channels, 1) | |
| self.ffn_layers.append( | |
| FeedForwardNetwork( | |
| hidden_channels, | |
| hidden_channels if (idx + 1) != self.num_layers else out_channels, | |
| hidden_channels_ffn, | |
| kernel_size, | |
| dropout_p=dropout_p, | |
| ) | |
| ) | |
| if layer_norm_type == "1": | |
| self.norm_layers_2.append(LayerNorm(hidden_channels if (idx + 1) != self.num_layers else out_channels)) | |
| elif layer_norm_type == "2": | |
| self.norm_layers_2.append(LayerNorm2(hidden_channels if (idx + 1) != self.num_layers else out_channels)) | |
| else: | |
| raise ValueError(" [!] Unknown layer norm type") | |
| def forward(self, x, x_mask): | |
| """ | |
| Shapes: | |
| - x: :math:`[B, C, T]` | |
| - x_mask: :math:`[B, 1, T]` | |
| """ | |
| attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | |
| for i in range(self.num_layers): | |
| x = x * x_mask | |
| y = self.attn_layers[i](x, x, attn_mask) | |
| y = self.dropout(y) | |
| x = self.norm_layers_1[i](x + y) | |
| y = self.ffn_layers[i](x, x_mask) | |
| y = self.dropout(y) | |
| if (i + 1) == self.num_layers and hasattr(self, "proj"): | |
| x = self.proj(x) | |
| x = self.norm_layers_2[i](x + y) | |
| x = x * x_mask | |
| return x | |