Spaces:
Paused
Paused
| from torch import nn | |
| from .normalization import LayerNorm | |
| class GatedConvBlock(nn.Module): | |
| """Gated convolutional block as in https://arxiv.org/pdf/1612.08083.pdf | |
| Args: | |
| in_out_channels (int): number of input/output channels. | |
| kernel_size (int): convolution kernel size. | |
| dropout_p (float): dropout rate. | |
| """ | |
| def __init__(self, in_out_channels, kernel_size, dropout_p, num_layers): | |
| super().__init__() | |
| # class arguments | |
| self.dropout_p = dropout_p | |
| self.num_layers = num_layers | |
| # define layers | |
| self.conv_layers = nn.ModuleList() | |
| self.norm_layers = nn.ModuleList() | |
| self.layers = nn.ModuleList() | |
| for _ in range(num_layers): | |
| self.conv_layers += [nn.Conv1d(in_out_channels, 2 * in_out_channels, kernel_size, padding=kernel_size // 2)] | |
| self.norm_layers += [LayerNorm(2 * in_out_channels)] | |
| def forward(self, x, x_mask): | |
| o = x | |
| res = x | |
| for idx in range(self.num_layers): | |
| o = nn.functional.dropout(o, p=self.dropout_p, training=self.training) | |
| o = self.conv_layers[idx](o * x_mask) | |
| o = self.norm_layers[idx](o) | |
| o = nn.functional.glu(o, dim=1) | |
| o = res + o | |
| res = o | |
| return o | |