Spaces:
Paused
Paused
| # Copyright 2020-present, the HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Once a model has been fine-pruned, the weights that are masked during the forward pass can be pruned once for all. | |
| For instance, once the a model from the :class:`~emmental.MaskedBertForSequenceClassification` is trained, it can be saved (and then loaded) | |
| as a standard :class:`~transformers.BertForSequenceClassification`. | |
| """ | |
| import argparse | |
| import os | |
| import shutil | |
| import torch | |
| from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer | |
| def main(args): | |
| pruning_method = args.pruning_method | |
| threshold = args.threshold | |
| model_name_or_path = args.model_name_or_path.rstrip("/") | |
| target_model_path = args.target_model_path | |
| print(f"Load fine-pruned model from {model_name_or_path}") | |
| model = torch.load(os.path.join(model_name_or_path, "pytorch_model.bin")) | |
| pruned_model = {} | |
| for name, tensor in model.items(): | |
| if "embeddings" in name or "LayerNorm" in name or "pooler" in name: | |
| pruned_model[name] = tensor | |
| print(f"Copied layer {name}") | |
| elif "classifier" in name or "qa_output" in name: | |
| pruned_model[name] = tensor | |
| print(f"Copied layer {name}") | |
| elif "bias" in name: | |
| pruned_model[name] = tensor | |
| print(f"Copied layer {name}") | |
| else: | |
| if pruning_method == "magnitude": | |
| mask = MagnitudeBinarizer.apply(inputs=tensor, threshold=threshold) | |
| pruned_model[name] = tensor * mask | |
| print(f"Pruned layer {name}") | |
| elif pruning_method == "topK": | |
| if "mask_scores" in name: | |
| continue | |
| prefix_ = name[:-6] | |
| scores = model[f"{prefix_}mask_scores"] | |
| mask = TopKBinarizer.apply(scores, threshold) | |
| pruned_model[name] = tensor * mask | |
| print(f"Pruned layer {name}") | |
| elif pruning_method == "sigmoied_threshold": | |
| if "mask_scores" in name: | |
| continue | |
| prefix_ = name[:-6] | |
| scores = model[f"{prefix_}mask_scores"] | |
| mask = ThresholdBinarizer.apply(scores, threshold, True) | |
| pruned_model[name] = tensor * mask | |
| print(f"Pruned layer {name}") | |
| elif pruning_method == "l0": | |
| if "mask_scores" in name: | |
| continue | |
| prefix_ = name[:-6] | |
| scores = model[f"{prefix_}mask_scores"] | |
| l, r = -0.1, 1.1 | |
| s = torch.sigmoid(scores) | |
| s_bar = s * (r - l) + l | |
| mask = s_bar.clamp(min=0.0, max=1.0) | |
| pruned_model[name] = tensor * mask | |
| print(f"Pruned layer {name}") | |
| else: | |
| raise ValueError("Unknown pruning method") | |
| if target_model_path is None: | |
| target_model_path = os.path.join( | |
| os.path.dirname(model_name_or_path), f"bertarized_{os.path.basename(model_name_or_path)}" | |
| ) | |
| if not os.path.isdir(target_model_path): | |
| shutil.copytree(model_name_or_path, target_model_path) | |
| print(f"\nCreated folder {target_model_path}") | |
| torch.save(pruned_model, os.path.join(target_model_path, "pytorch_model.bin")) | |
| print("\nPruned model saved! See you later!") | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--pruning_method", | |
| choices=["l0", "magnitude", "topK", "sigmoied_threshold"], | |
| type=str, | |
| required=True, | |
| help=( | |
| "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," | |
| " sigmoied_threshold = Soft movement pruning)" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--threshold", | |
| type=float, | |
| required=False, | |
| help=( | |
| "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." | |
| "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." | |
| "Not needed for `l0`" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--model_name_or_path", | |
| type=str, | |
| required=True, | |
| help="Folder containing the model that was previously fine-pruned", | |
| ) | |
| parser.add_argument( | |
| "--target_model_path", | |
| default=None, | |
| type=str, | |
| required=False, | |
| help="Folder containing the model that was previously fine-pruned", | |
| ) | |
| args = parser.parse_args() | |
| main(args) | |