Spaces:
Paused
Paused
| """ | |
| coding=utf-8 | |
| Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal, Huggingface team :) | |
| Adapted From Facebook Inc, Detectron2 | |
| Licensed under the Apache License, Version 2.0 (the "License"); | |
| you may not use this file except in compliance with the License. | |
| You may obtain a copy of the License at | |
| http://www.apache.org/licenses/LICENSE-2.0 | |
| Unless required by applicable law or agreed to in writing, software | |
| distributed under the License is distributed on an "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| See the License for the specific language governing permissions and | |
| limitations under the License.import copy | |
| """ | |
| import copy | |
| import fnmatch | |
| import json | |
| import os | |
| import pickle as pkl | |
| import shutil | |
| import sys | |
| import tarfile | |
| import tempfile | |
| from collections import OrderedDict | |
| from contextlib import contextmanager | |
| from functools import partial | |
| from hashlib import sha256 | |
| from io import BytesIO | |
| from pathlib import Path | |
| from urllib.parse import urlparse | |
| from zipfile import ZipFile, is_zipfile | |
| import cv2 | |
| import numpy as np | |
| import requests | |
| import wget | |
| from filelock import FileLock | |
| from PIL import Image | |
| from tqdm.auto import tqdm | |
| from yaml import Loader, dump, load | |
| try: | |
| import torch | |
| _torch_available = True | |
| except ImportError: | |
| _torch_available = False | |
| try: | |
| from torch.hub import _get_torch_home | |
| torch_cache_home = _get_torch_home() | |
| except ImportError: | |
| torch_cache_home = os.path.expanduser( | |
| os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) | |
| ) | |
| default_cache_path = os.path.join(torch_cache_home, "transformers") | |
| CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co" | |
| S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert" | |
| PATH = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) | |
| CONFIG = os.path.join(PATH, "config.yaml") | |
| ATTRIBUTES = os.path.join(PATH, "attributes.txt") | |
| OBJECTS = os.path.join(PATH, "objects.txt") | |
| PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) | |
| PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) | |
| TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) | |
| WEIGHTS_NAME = "pytorch_model.bin" | |
| CONFIG_NAME = "config.yaml" | |
| def load_labels(objs=OBJECTS, attrs=ATTRIBUTES): | |
| vg_classes = [] | |
| with open(objs) as f: | |
| for object in f.readlines(): | |
| vg_classes.append(object.split(",")[0].lower().strip()) | |
| vg_attrs = [] | |
| with open(attrs) as f: | |
| for object in f.readlines(): | |
| vg_attrs.append(object.split(",")[0].lower().strip()) | |
| return vg_classes, vg_attrs | |
| def load_checkpoint(ckp): | |
| r = OrderedDict() | |
| with open(ckp, "rb") as f: | |
| ckp = pkl.load(f)["model"] | |
| for k in copy.deepcopy(list(ckp.keys())): | |
| v = ckp.pop(k) | |
| if isinstance(v, np.ndarray): | |
| v = torch.tensor(v) | |
| else: | |
| assert isinstance(v, torch.tensor), type(v) | |
| r[k] = v | |
| return r | |
| class Config: | |
| _pointer = {} | |
| def __init__(self, dictionary: dict, name: str = "root", level=0): | |
| self._name = name | |
| self._level = level | |
| d = {} | |
| for k, v in dictionary.items(): | |
| if v is None: | |
| raise ValueError() | |
| k = copy.deepcopy(k) | |
| v = copy.deepcopy(v) | |
| if isinstance(v, dict): | |
| v = Config(v, name=k, level=level + 1) | |
| d[k] = v | |
| setattr(self, k, v) | |
| self._pointer = d | |
| def __repr__(self): | |
| return str(list((self._pointer.keys()))) | |
| def __setattr__(self, key, val): | |
| self.__dict__[key] = val | |
| self.__dict__[key.upper()] = val | |
| levels = key.split(".") | |
| last_level = len(levels) - 1 | |
| pointer = self._pointer | |
| if len(levels) > 1: | |
| for i, l in enumerate(levels): | |
| if hasattr(self, l) and isinstance(getattr(self, l), Config): | |
| setattr(getattr(self, l), ".".join(levels[i:]), val) | |
| if l == last_level: | |
| pointer[l] = val | |
| else: | |
| pointer = pointer[l] | |
| def to_dict(self): | |
| return self._pointer | |
| def dump_yaml(self, data, file_name): | |
| with open(f"{file_name}", "w") as stream: | |
| dump(data, stream) | |
| def dump_json(self, data, file_name): | |
| with open(f"{file_name}", "w") as stream: | |
| json.dump(data, stream) | |
| def load_yaml(config): | |
| with open(config) as stream: | |
| data = load(stream, Loader=Loader) | |
| return data | |
| def __str__(self): | |
| t = " " | |
| if self._name != "root": | |
| r = f"{t * (self._level-1)}{self._name}:\n" | |
| else: | |
| r = "" | |
| level = self._level | |
| for i, (k, v) in enumerate(self._pointer.items()): | |
| if isinstance(v, Config): | |
| r += f"{t * (self._level)}{v}\n" | |
| self._level += 1 | |
| else: | |
| r += f"{t * (self._level)}{k}: {v} ({type(v).__name__})\n" | |
| self._level = level | |
| return r[:-1] | |
| def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs): | |
| config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
| return cls(config_dict) | |
| def get_config_dict(cls, pretrained_model_name_or_path: str, **kwargs): | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", False) | |
| if os.path.isdir(pretrained_model_name_or_path): | |
| config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) | |
| elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): | |
| config_file = pretrained_model_name_or_path | |
| else: | |
| config_file = hf_bucket_url(pretrained_model_name_or_path, filename=CONFIG_NAME, use_cdn=False) | |
| try: | |
| # Load from URL or cache if already cached | |
| resolved_config_file = cached_path( | |
| config_file, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| resume_download=resume_download, | |
| local_files_only=local_files_only, | |
| ) | |
| # Load config dict | |
| if resolved_config_file is None: | |
| raise EnvironmentError | |
| config_file = Config.load_yaml(resolved_config_file) | |
| except EnvironmentError: | |
| msg = "Can't load config for" | |
| raise EnvironmentError(msg) | |
| if resolved_config_file == config_file: | |
| print("loading configuration file from path") | |
| else: | |
| print("loading configuration file cache") | |
| return Config.load_yaml(resolved_config_file), kwargs | |
| # quick compare tensors | |
| def compare(in_tensor): | |
| out_tensor = torch.load("dump.pt", map_location=in_tensor.device) | |
| n1 = in_tensor.numpy() | |
| n2 = out_tensor.numpy()[0] | |
| print(n1.shape, n1[0, 0, :5]) | |
| print(n2.shape, n2[0, 0, :5]) | |
| assert np.allclose(n1, n2, rtol=0.01, atol=0.1), ( | |
| f"{sum([1 for x in np.isclose(n1, n2, rtol=0.01, atol=0.1).flatten() if x is False])/len(n1.flatten())*100:.4f} %" | |
| " element-wise mismatch" | |
| ) | |
| raise Exception("tensors are all good") | |
| # Hugging face functions below | |
| def is_remote_url(url_or_filename): | |
| parsed = urlparse(url_or_filename) | |
| return parsed.scheme in ("http", "https") | |
| def hf_bucket_url(model_id: str, filename: str, use_cdn=True) -> str: | |
| endpoint = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX | |
| legacy_format = "/" not in model_id | |
| if legacy_format: | |
| return f"{endpoint}/{model_id}-{filename}" | |
| else: | |
| return f"{endpoint}/{model_id}/{filename}" | |
| def http_get( | |
| url, | |
| temp_file, | |
| proxies=None, | |
| resume_size=0, | |
| user_agent=None, | |
| ): | |
| ua = "python/{}".format(sys.version.split()[0]) | |
| if _torch_available: | |
| ua += "; torch/{}".format(torch.__version__) | |
| if isinstance(user_agent, dict): | |
| ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items()) | |
| elif isinstance(user_agent, str): | |
| ua += "; " + user_agent | |
| headers = {"user-agent": ua} | |
| if resume_size > 0: | |
| headers["Range"] = "bytes=%d-" % (resume_size,) | |
| response = requests.get(url, stream=True, proxies=proxies, headers=headers) | |
| if response.status_code == 416: # Range not satisfiable | |
| return | |
| content_length = response.headers.get("Content-Length") | |
| total = resume_size + int(content_length) if content_length is not None else None | |
| progress = tqdm( | |
| unit="B", | |
| unit_scale=True, | |
| total=total, | |
| initial=resume_size, | |
| desc="Downloading", | |
| ) | |
| for chunk in response.iter_content(chunk_size=1024): | |
| if chunk: # filter out keep-alive new chunks | |
| progress.update(len(chunk)) | |
| temp_file.write(chunk) | |
| progress.close() | |
| def get_from_cache( | |
| url, | |
| cache_dir=None, | |
| force_download=False, | |
| proxies=None, | |
| etag_timeout=10, | |
| resume_download=False, | |
| user_agent=None, | |
| local_files_only=False, | |
| ): | |
| if cache_dir is None: | |
| cache_dir = TRANSFORMERS_CACHE | |
| if isinstance(cache_dir, Path): | |
| cache_dir = str(cache_dir) | |
| os.makedirs(cache_dir, exist_ok=True) | |
| etag = None | |
| if not local_files_only: | |
| try: | |
| response = requests.head(url, allow_redirects=True, proxies=proxies, timeout=etag_timeout) | |
| if response.status_code == 200: | |
| etag = response.headers.get("ETag") | |
| except (EnvironmentError, requests.exceptions.Timeout): | |
| # etag is already None | |
| pass | |
| filename = url_to_filename(url, etag) | |
| # get cache path to put the file | |
| cache_path = os.path.join(cache_dir, filename) | |
| # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. | |
| # try to get the last downloaded one | |
| if etag is None: | |
| if os.path.exists(cache_path): | |
| return cache_path | |
| else: | |
| matching_files = [ | |
| file | |
| for file in fnmatch.filter(os.listdir(cache_dir), filename + ".*") | |
| if not file.endswith(".json") and not file.endswith(".lock") | |
| ] | |
| if len(matching_files) > 0: | |
| return os.path.join(cache_dir, matching_files[-1]) | |
| else: | |
| # If files cannot be found and local_files_only=True, | |
| # the models might've been found if local_files_only=False | |
| # Notify the user about that | |
| if local_files_only: | |
| raise ValueError( | |
| "Cannot find the requested files in the cached path and outgoing traffic has been" | |
| " disabled. To enable model look-ups and downloads online, set 'local_files_only'" | |
| " to False." | |
| ) | |
| return None | |
| # From now on, etag is not None. | |
| if os.path.exists(cache_path) and not force_download: | |
| return cache_path | |
| # Prevent parallel downloads of the same file with a lock. | |
| lock_path = cache_path + ".lock" | |
| with FileLock(lock_path): | |
| # If the download just completed while the lock was activated. | |
| if os.path.exists(cache_path) and not force_download: | |
| # Even if returning early like here, the lock will be released. | |
| return cache_path | |
| if resume_download: | |
| incomplete_path = cache_path + ".incomplete" | |
| def _resumable_file_manager(): | |
| with open(incomplete_path, "a+b") as f: | |
| yield f | |
| temp_file_manager = _resumable_file_manager | |
| if os.path.exists(incomplete_path): | |
| resume_size = os.stat(incomplete_path).st_size | |
| else: | |
| resume_size = 0 | |
| else: | |
| temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False) | |
| resume_size = 0 | |
| # Download to temporary file, then copy to cache dir once finished. | |
| # Otherwise you get corrupt cache entries if the download gets interrupted. | |
| with temp_file_manager() as temp_file: | |
| print( | |
| "%s not found in cache or force_download set to True, downloading to %s", | |
| url, | |
| temp_file.name, | |
| ) | |
| http_get( | |
| url, | |
| temp_file, | |
| proxies=proxies, | |
| resume_size=resume_size, | |
| user_agent=user_agent, | |
| ) | |
| os.replace(temp_file.name, cache_path) | |
| meta = {"url": url, "etag": etag} | |
| meta_path = cache_path + ".json" | |
| with open(meta_path, "w") as meta_file: | |
| json.dump(meta, meta_file) | |
| return cache_path | |
| def url_to_filename(url, etag=None): | |
| url_bytes = url.encode("utf-8") | |
| url_hash = sha256(url_bytes) | |
| filename = url_hash.hexdigest() | |
| if etag: | |
| etag_bytes = etag.encode("utf-8") | |
| etag_hash = sha256(etag_bytes) | |
| filename += "." + etag_hash.hexdigest() | |
| if url.endswith(".h5"): | |
| filename += ".h5" | |
| return filename | |
| def cached_path( | |
| url_or_filename, | |
| cache_dir=None, | |
| force_download=False, | |
| proxies=None, | |
| resume_download=False, | |
| user_agent=None, | |
| extract_compressed_file=False, | |
| force_extract=False, | |
| local_files_only=False, | |
| ): | |
| if cache_dir is None: | |
| cache_dir = TRANSFORMERS_CACHE | |
| if isinstance(url_or_filename, Path): | |
| url_or_filename = str(url_or_filename) | |
| if isinstance(cache_dir, Path): | |
| cache_dir = str(cache_dir) | |
| if is_remote_url(url_or_filename): | |
| # URL, so get it from the cache (downloading if necessary) | |
| output_path = get_from_cache( | |
| url_or_filename, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| resume_download=resume_download, | |
| user_agent=user_agent, | |
| local_files_only=local_files_only, | |
| ) | |
| elif os.path.exists(url_or_filename): | |
| # File, and it exists. | |
| output_path = url_or_filename | |
| elif urlparse(url_or_filename).scheme == "": | |
| # File, but it doesn't exist. | |
| raise EnvironmentError("file {} not found".format(url_or_filename)) | |
| else: | |
| # Something unknown | |
| raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename)) | |
| if extract_compressed_file: | |
| if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path): | |
| return output_path | |
| # Path where we extract compressed archives | |
| # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" | |
| output_dir, output_file = os.path.split(output_path) | |
| output_extract_dir_name = output_file.replace(".", "-") + "-extracted" | |
| output_path_extracted = os.path.join(output_dir, output_extract_dir_name) | |
| if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract: | |
| return output_path_extracted | |
| # Prevent parallel extractions | |
| lock_path = output_path + ".lock" | |
| with FileLock(lock_path): | |
| shutil.rmtree(output_path_extracted, ignore_errors=True) | |
| os.makedirs(output_path_extracted) | |
| if is_zipfile(output_path): | |
| with ZipFile(output_path, "r") as zip_file: | |
| zip_file.extractall(output_path_extracted) | |
| zip_file.close() | |
| elif tarfile.is_tarfile(output_path): | |
| tar_file = tarfile.open(output_path) | |
| tar_file.extractall(output_path_extracted) | |
| tar_file.close() | |
| else: | |
| raise EnvironmentError("Archive format of {} could not be identified".format(output_path)) | |
| return output_path_extracted | |
| return output_path | |
| def get_data(query, delim=","): | |
| assert isinstance(query, str) | |
| if os.path.isfile(query): | |
| with open(query) as f: | |
| data = eval(f.read()) | |
| else: | |
| req = requests.get(query) | |
| try: | |
| data = requests.json() | |
| except Exception: | |
| data = req.content.decode() | |
| assert data is not None, "could not connect" | |
| try: | |
| data = eval(data) | |
| except Exception: | |
| data = data.split("\n") | |
| req.close() | |
| return data | |
| def get_image_from_url(url): | |
| response = requests.get(url) | |
| img = np.array(Image.open(BytesIO(response.content))) | |
| return img | |
| # to load legacy frcnn checkpoint from detectron | |
| def load_frcnn_pkl_from_url(url): | |
| fn = url.split("/")[-1] | |
| if fn not in os.listdir(os.getcwd()): | |
| wget.download(url) | |
| with open(fn, "rb") as stream: | |
| weights = pkl.load(stream) | |
| model = weights.pop("model") | |
| new = {} | |
| for k, v in model.items(): | |
| new[k] = torch.from_numpy(v) | |
| if "running_var" in k: | |
| zero = torch.tensor([0]) | |
| k2 = k.replace("running_var", "num_batches_tracked") | |
| new[k2] = zero | |
| return new | |
| def get_demo_path(): | |
| print(f"{os.path.abspath(os.path.join(PATH, os.pardir))}/demo.ipynb") | |
| def img_tensorize(im, input_format="RGB"): | |
| assert isinstance(im, str) | |
| if os.path.isfile(im): | |
| img = cv2.imread(im) | |
| else: | |
| img = get_image_from_url(im) | |
| assert img is not None, f"could not connect to: {im}" | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| if input_format == "RGB": | |
| img = img[:, :, ::-1] | |
| return img | |
| def chunk(images, batch=1): | |
| return (images[i : i + batch] for i in range(0, len(images), batch)) | |