Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """BERT finetuning runner. | |
| Finetuning the library models for multiple choice on SWAG (Bert). | |
| """ | |
| import argparse | |
| import csv | |
| import glob | |
| import logging | |
| import os | |
| import random | |
| import numpy as np | |
| import torch | |
| from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset | |
| from torch.utils.data.distributed import DistributedSampler | |
| from tqdm import tqdm, trange | |
| import transformers | |
| from transformers import ( | |
| WEIGHTS_NAME, | |
| AdamW, | |
| AutoConfig, | |
| AutoModelForMultipleChoice, | |
| AutoTokenizer, | |
| get_linear_schedule_with_warmup, | |
| ) | |
| from transformers.trainer_utils import is_main_process | |
| try: | |
| from torch.utils.tensorboard import SummaryWriter | |
| except ImportError: | |
| from tensorboardX import SummaryWriter | |
| logger = logging.getLogger(__name__) | |
| class SwagExample(object): | |
| """A single training/test example for the SWAG dataset.""" | |
| def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None): | |
| self.swag_id = swag_id | |
| self.context_sentence = context_sentence | |
| self.start_ending = start_ending | |
| self.endings = [ | |
| ending_0, | |
| ending_1, | |
| ending_2, | |
| ending_3, | |
| ] | |
| self.label = label | |
| def __str__(self): | |
| return self.__repr__() | |
| def __repr__(self): | |
| attributes = [ | |
| "swag_id: {}".format(self.swag_id), | |
| "context_sentence: {}".format(self.context_sentence), | |
| "start_ending: {}".format(self.start_ending), | |
| "ending_0: {}".format(self.endings[0]), | |
| "ending_1: {}".format(self.endings[1]), | |
| "ending_2: {}".format(self.endings[2]), | |
| "ending_3: {}".format(self.endings[3]), | |
| ] | |
| if self.label is not None: | |
| attributes.append("label: {}".format(self.label)) | |
| return ", ".join(attributes) | |
| class InputFeatures(object): | |
| def __init__(self, example_id, choices_features, label): | |
| self.example_id = example_id | |
| self.choices_features = [ | |
| {"input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids} | |
| for _, input_ids, input_mask, segment_ids in choices_features | |
| ] | |
| self.label = label | |
| def read_swag_examples(input_file, is_training=True): | |
| with open(input_file, "r", encoding="utf-8") as f: | |
| lines = list(csv.reader(f)) | |
| if is_training and lines[0][-1] != "label": | |
| raise ValueError("For training, the input file must contain a label column.") | |
| examples = [ | |
| SwagExample( | |
| swag_id=line[2], | |
| context_sentence=line[4], | |
| start_ending=line[5], # in the swag dataset, the | |
| # common beginning of each | |
| # choice is stored in "sent2". | |
| ending_0=line[7], | |
| ending_1=line[8], | |
| ending_2=line[9], | |
| ending_3=line[10], | |
| label=int(line[11]) if is_training else None, | |
| ) | |
| for line in lines[1:] # we skip the line with the column names | |
| ] | |
| return examples | |
| def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training): | |
| """Loads a data file into a list of `InputBatch`s.""" | |
| # Swag is a multiple choice task. To perform this task using Bert, | |
| # we will use the formatting proposed in "Improving Language | |
| # Understanding by Generative Pre-Training" and suggested by | |
| # @jacobdevlin-google in this issue | |
| # https://github.com/google-research/bert/issues/38. | |
| # | |
| # Each choice will correspond to a sample on which we run the | |
| # inference. For a given Swag example, we will create the 4 | |
| # following inputs: | |
| # - [CLS] context [SEP] choice_1 [SEP] | |
| # - [CLS] context [SEP] choice_2 [SEP] | |
| # - [CLS] context [SEP] choice_3 [SEP] | |
| # - [CLS] context [SEP] choice_4 [SEP] | |
| # The model will output a single value for each input. To get the | |
| # final decision of the model, we will run a softmax over these 4 | |
| # outputs. | |
| features = [] | |
| for example_index, example in tqdm(enumerate(examples)): | |
| context_tokens = tokenizer.tokenize(example.context_sentence) | |
| start_ending_tokens = tokenizer.tokenize(example.start_ending) | |
| choices_features = [] | |
| for ending_index, ending in enumerate(example.endings): | |
| # We create a copy of the context tokens in order to be | |
| # able to shrink it according to ending_tokens | |
| context_tokens_choice = context_tokens[:] | |
| ending_tokens = start_ending_tokens + tokenizer.tokenize(ending) | |
| # Modifies `context_tokens_choice` and `ending_tokens` in | |
| # place so that the total length is less than the | |
| # specified length. Account for [CLS], [SEP], [SEP] with | |
| # "- 3" | |
| _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3) | |
| tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"] | |
| segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1) | |
| input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
| input_mask = [1] * len(input_ids) | |
| # Zero-pad up to the sequence length. | |
| padding = [0] * (max_seq_length - len(input_ids)) | |
| input_ids += padding | |
| input_mask += padding | |
| segment_ids += padding | |
| assert len(input_ids) == max_seq_length | |
| assert len(input_mask) == max_seq_length | |
| assert len(segment_ids) == max_seq_length | |
| choices_features.append((tokens, input_ids, input_mask, segment_ids)) | |
| label = example.label | |
| if example_index < 5: | |
| logger.info("*** Example ***") | |
| logger.info("swag_id: {}".format(example.swag_id)) | |
| for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features): | |
| logger.info("choice: {}".format(choice_idx)) | |
| logger.info("tokens: {}".format(" ".join(tokens))) | |
| logger.info("input_ids: {}".format(" ".join(map(str, input_ids)))) | |
| logger.info("input_mask: {}".format(" ".join(map(str, input_mask)))) | |
| logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids)))) | |
| if is_training: | |
| logger.info("label: {}".format(label)) | |
| features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label)) | |
| return features | |
| def _truncate_seq_pair(tokens_a, tokens_b, max_length): | |
| """Truncates a sequence pair in place to the maximum length.""" | |
| # This is a simple heuristic which will always truncate the longer sequence | |
| # one token at a time. This makes more sense than truncating an equal percent | |
| # of tokens from each, since if one sequence is very short then each token | |
| # that's truncated likely contains more information than a longer sequence. | |
| while True: | |
| total_length = len(tokens_a) + len(tokens_b) | |
| if total_length <= max_length: | |
| break | |
| if len(tokens_a) > len(tokens_b): | |
| tokens_a.pop() | |
| else: | |
| tokens_b.pop() | |
| def accuracy(out, labels): | |
| outputs = np.argmax(out, axis=1) | |
| return np.sum(outputs == labels) | |
| def select_field(features, field): | |
| return [[choice[field] for choice in feature.choices_features] for feature in features] | |
| def set_seed(args): | |
| random.seed(args.seed) | |
| np.random.seed(args.seed) | |
| torch.manual_seed(args.seed) | |
| if args.n_gpu > 0: | |
| torch.cuda.manual_seed_all(args.seed) | |
| def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): | |
| if args.local_rank not in [-1, 0]: | |
| torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
| # Load data features from cache or dataset file | |
| input_file = args.predict_file if evaluate else args.train_file | |
| cached_features_file = os.path.join( | |
| os.path.dirname(input_file), | |
| "cached_{}_{}_{}".format( | |
| "dev" if evaluate else "train", | |
| list(filter(None, args.model_name_or_path.split("/"))).pop(), | |
| str(args.max_seq_length), | |
| ), | |
| ) | |
| if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples: | |
| logger.info("Loading features from cached file %s", cached_features_file) | |
| features = torch.load(cached_features_file) | |
| else: | |
| logger.info("Creating features from dataset file at %s", input_file) | |
| examples = read_swag_examples(input_file) | |
| features = convert_examples_to_features(examples, tokenizer, args.max_seq_length, not evaluate) | |
| if args.local_rank in [-1, 0]: | |
| logger.info("Saving features into cached file %s", cached_features_file) | |
| torch.save(features, cached_features_file) | |
| if args.local_rank == 0: | |
| torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
| # Convert to Tensors and build dataset | |
| all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long) | |
| all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long) | |
| all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long) | |
| all_label = torch.tensor([f.label for f in features], dtype=torch.long) | |
| if evaluate: | |
| dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) | |
| else: | |
| dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) | |
| if output_examples: | |
| return dataset, examples, features | |
| return dataset | |
| def train(args, train_dataset, model, tokenizer): | |
| """Train the model""" | |
| if args.local_rank in [-1, 0]: | |
| tb_writer = SummaryWriter() | |
| args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) | |
| train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) | |
| train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) | |
| if args.max_steps > 0: | |
| t_total = args.max_steps | |
| args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 | |
| else: | |
| t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs | |
| # Prepare optimizer and schedule (linear warmup and decay) | |
| no_decay = ["bias", "LayerNorm.weight"] | |
| optimizer_grouped_parameters = [ | |
| { | |
| "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], | |
| "weight_decay": args.weight_decay, | |
| }, | |
| {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, | |
| ] | |
| optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) | |
| scheduler = get_linear_schedule_with_warmup( | |
| optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total | |
| ) | |
| if args.fp16: | |
| try: | |
| from apex import amp | |
| except ImportError: | |
| raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
| model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
| # multi-gpu training (should be after apex fp16 initialization) | |
| if args.n_gpu > 1: | |
| model = torch.nn.DataParallel(model) | |
| # Distributed training (should be after apex fp16 initialization) | |
| if args.local_rank != -1: | |
| model = torch.nn.parallel.DistributedDataParallel( | |
| model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True | |
| ) | |
| # Train! | |
| logger.info("***** Running training *****") | |
| logger.info(" Num examples = %d", len(train_dataset)) | |
| logger.info(" Num Epochs = %d", args.num_train_epochs) | |
| logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) | |
| logger.info( | |
| " Total train batch size (w. parallel, distributed & accumulation) = %d", | |
| args.train_batch_size | |
| * args.gradient_accumulation_steps | |
| * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), | |
| ) | |
| logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) | |
| logger.info(" Total optimization steps = %d", t_total) | |
| global_step = 0 | |
| tr_loss, logging_loss = 0.0, 0.0 | |
| model.zero_grad() | |
| train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) | |
| set_seed(args) # Added here for reproductibility | |
| for _ in train_iterator: | |
| epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) | |
| for step, batch in enumerate(epoch_iterator): | |
| model.train() | |
| batch = tuple(t.to(args.device) for t in batch) | |
| inputs = { | |
| "input_ids": batch[0], | |
| "attention_mask": batch[1], | |
| # 'token_type_ids': None if args.model_type == 'xlm' else batch[2], | |
| "token_type_ids": batch[2], | |
| "labels": batch[3], | |
| } | |
| # if args.model_type in ['xlnet', 'xlm']: | |
| # inputs.update({'cls_index': batch[5], | |
| # 'p_mask': batch[6]}) | |
| outputs = model(**inputs) | |
| loss = outputs[0] # model outputs are always tuple in transformers (see doc) | |
| if args.n_gpu > 1: | |
| loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training | |
| if args.gradient_accumulation_steps > 1: | |
| loss = loss / args.gradient_accumulation_steps | |
| if args.fp16: | |
| with amp.scale_loss(loss, optimizer) as scaled_loss: | |
| scaled_loss.backward() | |
| torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) | |
| else: | |
| loss.backward() | |
| torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
| tr_loss += loss.item() | |
| if (step + 1) % args.gradient_accumulation_steps == 0: | |
| optimizer.step() | |
| scheduler.step() # Update learning rate schedule | |
| model.zero_grad() | |
| global_step += 1 | |
| if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
| # Log metrics | |
| if ( | |
| args.local_rank == -1 and args.evaluate_during_training | |
| ): # Only evaluate when single GPU otherwise metrics may not average well | |
| results = evaluate(args, model, tokenizer) | |
| for key, value in results.items(): | |
| tb_writer.add_scalar("eval_{}".format(key), value, global_step) | |
| tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) | |
| tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) | |
| logging_loss = tr_loss | |
| if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: | |
| # Save model checkpoint | |
| output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) | |
| model_to_save = ( | |
| model.module if hasattr(model, "module") else model | |
| ) # Take care of distributed/parallel training | |
| model_to_save.save_pretrained(output_dir) | |
| tokenizer.save_vocabulary(output_dir) | |
| torch.save(args, os.path.join(output_dir, "training_args.bin")) | |
| logger.info("Saving model checkpoint to %s", output_dir) | |
| if args.max_steps > 0 and global_step > args.max_steps: | |
| epoch_iterator.close() | |
| break | |
| if args.max_steps > 0 and global_step > args.max_steps: | |
| train_iterator.close() | |
| break | |
| if args.local_rank in [-1, 0]: | |
| tb_writer.close() | |
| return global_step, tr_loss / global_step | |
| def evaluate(args, model, tokenizer, prefix=""): | |
| dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) | |
| if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: | |
| os.makedirs(args.output_dir) | |
| args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
| # Note that DistributedSampler samples randomly | |
| eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset) | |
| eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) | |
| # Eval! | |
| logger.info("***** Running evaluation {} *****".format(prefix)) | |
| logger.info(" Num examples = %d", len(dataset)) | |
| logger.info(" Batch size = %d", args.eval_batch_size) | |
| eval_loss, eval_accuracy = 0, 0 | |
| nb_eval_steps, nb_eval_examples = 0, 0 | |
| for batch in tqdm(eval_dataloader, desc="Evaluating"): | |
| model.eval() | |
| batch = tuple(t.to(args.device) for t in batch) | |
| with torch.no_grad(): | |
| inputs = { | |
| "input_ids": batch[0], | |
| "attention_mask": batch[1], | |
| # 'token_type_ids': None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids | |
| "token_type_ids": batch[2], | |
| "labels": batch[3], | |
| } | |
| # if args.model_type in ['xlnet', 'xlm']: | |
| # inputs.update({'cls_index': batch[4], | |
| # 'p_mask': batch[5]}) | |
| outputs = model(**inputs) | |
| tmp_eval_loss, logits = outputs[:2] | |
| eval_loss += tmp_eval_loss.mean().item() | |
| logits = logits.detach().cpu().numpy() | |
| label_ids = inputs["labels"].to("cpu").numpy() | |
| tmp_eval_accuracy = accuracy(logits, label_ids) | |
| eval_accuracy += tmp_eval_accuracy | |
| nb_eval_steps += 1 | |
| nb_eval_examples += inputs["input_ids"].size(0) | |
| eval_loss = eval_loss / nb_eval_steps | |
| eval_accuracy = eval_accuracy / nb_eval_examples | |
| result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy} | |
| output_eval_file = os.path.join(args.output_dir, "eval_results.txt") | |
| with open(output_eval_file, "w") as writer: | |
| logger.info("***** Eval results *****") | |
| for key in sorted(result.keys()): | |
| logger.info("%s = %s", key, str(result[key])) | |
| writer.write("%s = %s\n" % (key, str(result[key]))) | |
| return result | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| # Required parameters | |
| parser.add_argument( | |
| "--train_file", default=None, type=str, required=True, help="SWAG csv for training. E.g., train.csv" | |
| ) | |
| parser.add_argument( | |
| "--predict_file", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="SWAG csv for predictions. E.g., val.csv or test.csv", | |
| ) | |
| parser.add_argument( | |
| "--model_name_or_path", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models", | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="The output directory where the model checkpoints and predictions will be written.", | |
| ) | |
| # Other parameters | |
| parser.add_argument( | |
| "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" | |
| ) | |
| parser.add_argument( | |
| "--tokenizer_name", | |
| default="", | |
| type=str, | |
| help="Pretrained tokenizer name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--max_seq_length", | |
| default=384, | |
| type=int, | |
| help=( | |
| "The maximum total input sequence length after tokenization. Sequences " | |
| "longer than this will be truncated, and sequences shorter than this will be padded." | |
| ), | |
| ) | |
| parser.add_argument("--do_train", action="store_true", help="Whether to run training.") | |
| parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") | |
| parser.add_argument( | |
| "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." | |
| ) | |
| parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") | |
| parser.add_argument( | |
| "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." | |
| ) | |
| parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") | |
| parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument( | |
| "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." | |
| ) | |
| parser.add_argument( | |
| "--max_steps", | |
| default=-1, | |
| type=int, | |
| help="If > 0: set total number of training steps to perform. Override num_train_epochs.", | |
| ) | |
| parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") | |
| parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") | |
| parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") | |
| parser.add_argument( | |
| "--eval_all_checkpoints", | |
| action="store_true", | |
| help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", | |
| ) | |
| parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") | |
| parser.add_argument( | |
| "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" | |
| ) | |
| parser.add_argument( | |
| "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" | |
| ) | |
| parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") | |
| parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") | |
| parser.add_argument( | |
| "--fp16", | |
| action="store_true", | |
| help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", | |
| ) | |
| parser.add_argument( | |
| "--fp16_opt_level", | |
| type=str, | |
| default="O1", | |
| help=( | |
| "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
| "See details at https://nvidia.github.io/apex/amp.html" | |
| ), | |
| ) | |
| parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") | |
| parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") | |
| args = parser.parse_args() | |
| if ( | |
| os.path.exists(args.output_dir) | |
| and os.listdir(args.output_dir) | |
| and args.do_train | |
| and not args.overwrite_output_dir | |
| ): | |
| raise ValueError( | |
| "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( | |
| args.output_dir | |
| ) | |
| ) | |
| # Setup distant debugging if needed | |
| if args.server_ip and args.server_port: | |
| # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
| import ptvsd | |
| print("Waiting for debugger attach") | |
| ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
| ptvsd.wait_for_attach() | |
| # Setup CUDA, GPU & distributed training | |
| if args.local_rank == -1 or args.no_cuda: | |
| device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
| args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() | |
| else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs | |
| torch.cuda.set_device(args.local_rank) | |
| device = torch.device("cuda", args.local_rank) | |
| torch.distributed.init_process_group(backend="nccl") | |
| args.n_gpu = 1 | |
| args.device = device | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, | |
| ) | |
| logger.warning( | |
| "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
| args.local_rank, | |
| device, | |
| args.n_gpu, | |
| bool(args.local_rank != -1), | |
| args.fp16, | |
| ) | |
| # Set the verbosity to info of the Transformers logger (on main process only): | |
| if is_main_process(args.local_rank): | |
| transformers.utils.logging.set_verbosity_info() | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| # Set seed | |
| set_seed(args) | |
| # Load pretrained model and tokenizer | |
| if args.local_rank not in [-1, 0]: | |
| torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
| config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, | |
| ) | |
| model = AutoModelForMultipleChoice.from_pretrained( | |
| args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config | |
| ) | |
| if args.local_rank == 0: | |
| torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
| model.to(args.device) | |
| logger.info("Training/evaluation parameters %s", args) | |
| # Training | |
| if args.do_train: | |
| train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) | |
| global_step, tr_loss = train(args, train_dataset, model, tokenizer) | |
| logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) | |
| # Save the trained model and the tokenizer | |
| if args.local_rank == -1 or torch.distributed.get_rank() == 0: | |
| logger.info("Saving model checkpoint to %s", args.output_dir) | |
| # Save a trained model, configuration and tokenizer using `save_pretrained()`. | |
| # They can then be reloaded using `from_pretrained()` | |
| model_to_save = ( | |
| model.module if hasattr(model, "module") else model | |
| ) # Take care of distributed/parallel training | |
| model_to_save.save_pretrained(args.output_dir) | |
| tokenizer.save_pretrained(args.output_dir) | |
| # Good practice: save your training arguments together with the trained model | |
| torch.save(args, os.path.join(args.output_dir, "training_args.bin")) | |
| # Load a trained model and vocabulary that you have fine-tuned | |
| model = AutoModelForMultipleChoice.from_pretrained(args.output_dir) | |
| tokenizer = AutoTokenizer.from_pretrained(args.output_dir) | |
| model.to(args.device) | |
| # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory | |
| results = {} | |
| if args.do_eval and args.local_rank in [-1, 0]: | |
| if args.do_train: | |
| checkpoints = [args.output_dir] | |
| else: | |
| # if do_train is False and do_eval is true, load model directly from pretrained. | |
| checkpoints = [args.model_name_or_path] | |
| if args.eval_all_checkpoints: | |
| checkpoints = [ | |
| os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) | |
| ] | |
| logger.info("Evaluate the following checkpoints: %s", checkpoints) | |
| for checkpoint in checkpoints: | |
| # Reload the model | |
| global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" | |
| model = AutoModelForMultipleChoice.from_pretrained(checkpoint) | |
| tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
| model.to(args.device) | |
| # Evaluate | |
| result = evaluate(args, model, tokenizer, prefix=global_step) | |
| result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()} | |
| results.update(result) | |
| logger.info("Results: {}".format(results)) | |
| return results | |
| if __name__ == "__main__": | |
| main() | |