Spaces:
Paused
Paused
| #!/usr/bin/env python3 | |
| import argparse | |
| import re | |
| from typing import Dict | |
| import torch | |
| from datasets import Audio, Dataset, load_dataset, load_metric | |
| from transformers import AutoFeatureExtractor, pipeline | |
| def log_results(result: Dataset, args: Dict[str, str]): | |
| """DO NOT CHANGE. This function computes and logs the result metrics.""" | |
| log_outputs = args.log_outputs | |
| dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) | |
| # load metric | |
| wer = load_metric("wer") | |
| cer = load_metric("cer") | |
| # compute metrics | |
| wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) | |
| cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) | |
| # print & log results | |
| result_str = f"WER: {wer_result}\nCER: {cer_result}" | |
| print(result_str) | |
| with open(f"{dataset_id}_eval_results.txt", "w") as f: | |
| f.write(result_str) | |
| # log all results in text file. Possibly interesting for analysis | |
| if log_outputs is not None: | |
| pred_file = f"log_{dataset_id}_predictions.txt" | |
| target_file = f"log_{dataset_id}_targets.txt" | |
| with open(pred_file, "w") as p, open(target_file, "w") as t: | |
| # mapping function to write output | |
| def write_to_file(batch, i): | |
| p.write(f"{i}" + "\n") | |
| p.write(batch["prediction"] + "\n") | |
| t.write(f"{i}" + "\n") | |
| t.write(batch["target"] + "\n") | |
| result.map(write_to_file, with_indices=True) | |
| def normalize_text(text: str) -> str: | |
| """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" | |
| chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training | |
| text = re.sub(chars_to_ignore_regex, "", text.lower()) | |
| # In addition, we can normalize the target text, e.g. removing new lines characters etc... | |
| # note that order is important here! | |
| token_sequences_to_ignore = ["\n\n", "\n", " ", " "] | |
| for t in token_sequences_to_ignore: | |
| text = " ".join(text.split(t)) | |
| return text | |
| def main(args): | |
| # load dataset | |
| dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True) | |
| # for testing: only process the first two examples as a test | |
| # dataset = dataset.select(range(10)) | |
| # load processor | |
| feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) | |
| sampling_rate = feature_extractor.sampling_rate | |
| # resample audio | |
| dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) | |
| # load eval pipeline | |
| if args.device is None: | |
| args.device = 0 if torch.cuda.is_available() else -1 | |
| asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device) | |
| # map function to decode audio | |
| def map_to_pred(batch): | |
| prediction = asr( | |
| batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s | |
| ) | |
| batch["prediction"] = prediction["text"] | |
| batch["target"] = normalize_text(batch["sentence"]) | |
| return batch | |
| # run inference on all examples | |
| result = dataset.map(map_to_pred, remove_columns=dataset.column_names) | |
| # compute and log_results | |
| # do not change function below | |
| log_results(result, args) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" | |
| ) | |
| parser.add_argument( | |
| "--dataset", | |
| type=str, | |
| required=True, | |
| help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", | |
| ) | |
| parser.add_argument( | |
| "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" | |
| ) | |
| parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") | |
| parser.add_argument( | |
| "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." | |
| ) | |
| parser.add_argument( | |
| "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." | |
| ) | |
| parser.add_argument( | |
| "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." | |
| ) | |
| parser.add_argument( | |
| "--device", | |
| type=int, | |
| default=None, | |
| help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", | |
| ) | |
| args = parser.parse_args() | |
| main(args) | |