Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import tempfile | |
| import unittest | |
| import pytest | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig | |
| from transformers.testing_utils import ( | |
| is_torch_available, | |
| require_accelerate, | |
| require_auto_gptq, | |
| require_optimum, | |
| require_torch_gpu, | |
| require_torch_multi_gpu, | |
| slow, | |
| ) | |
| if is_torch_available(): | |
| import torch | |
| class GPTQConfigTest(unittest.TestCase): | |
| def test_bits(self): | |
| with self.assertRaises(ValueError): | |
| GPTQConfig(bits="") | |
| GPTQConfig(bits=1) | |
| GPTQConfig(bits=2) | |
| GPTQConfig(bits=4) | |
| def test_dataset(self): | |
| with self.assertRaises(ValueError): | |
| GPTQConfig(bits=2, dataset="auto_gpt") | |
| GPTQConfig(bits=2, dataset="c4") | |
| GPTQConfig(bits=2, dataset="ptb-new") | |
| def test_damp_percent(self): | |
| with self.assertRaises(ValueError): | |
| GPTQConfig(bits=2, damp_percent=10) | |
| GPTQConfig(bits=2, damp_percent=-1) | |
| GPTQConfig(bits=2, damp_percent="0") | |
| GPTQConfig(bits=2, damp_percent=0.01) | |
| def test_to_dict(self): | |
| quantization_config = GPTQConfig(bits=2) | |
| quantization_config.to_dict() | |
| def test_from_dict(self): | |
| dict = {"bits": 2} | |
| quantization_config = GPTQConfig.from_dict(dict) | |
| self.assertEqual(dict["bits"], quantization_config.bits) | |
| def test_optimum_config(self): | |
| from optimum.gptq import GPTQQuantizer | |
| config = GPTQConfig(bits=2) | |
| optimum_config = GPTQQuantizer.from_dict(config.to_dict()) | |
| self.assertEqual(optimum_config.bits, config.bits) | |
| new_config = GPTQConfig.from_dict(optimum_config.to_dict()) | |
| self.assertEqual(optimum_config.bits, new_config.bits) | |
| class GPTQTest(unittest.TestCase): | |
| model_name = "bigscience/bloom-560m" | |
| input_text = "Hello my name is" | |
| EXPECTED_OUTPUTS = set() | |
| EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I") | |
| EXPECTED_OUTPUTS.add("Hello my name is John, I am a professional photographer and I") | |
| EXPECTED_OUTPUTS.add("Hello my name is John, I am a student in the University of") | |
| EXPECTED_OUTPUTS.add("Hello my name is John and I am a very good looking man.") | |
| EXPECTED_OUTPUTS.add("Hello my name is Alyson, I am a student in the") | |
| EXPECTED_OUTPUTS.add("Hello my name is Alyson and I am a very sweet,") | |
| # this seems a little small considering that we are doing 4bit quant but we have a small model and ww don't quantize the embeddings | |
| EXPECTED_RELATIVE_DIFFERENCE = 1.664253062 | |
| bits = 4 | |
| group_size = 128 | |
| desc_act = False | |
| disable_exllama = True | |
| dataset = [ | |
| "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm." | |
| ] | |
| device_map = None | |
| # called only once for all test in this class | |
| def setUpClass(cls): | |
| """ | |
| Setup quantized model | |
| """ | |
| cls.model_fp16 = AutoModelForCausalLM.from_pretrained( | |
| cls.model_name, torch_dtype=torch.float16, device_map=cls.device_map | |
| ) | |
| cls.mem_fp16 = cls.model_fp16.get_memory_footprint() | |
| cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True) | |
| quantization_config = GPTQConfig( | |
| bits=cls.bits, | |
| dataset=cls.dataset, | |
| tokenizer=cls.tokenizer, | |
| group_size=cls.group_size, | |
| desc_act=cls.desc_act, | |
| disable_exllama=cls.disable_exllama, | |
| ) | |
| cls.quantized_model = AutoModelForCausalLM.from_pretrained( | |
| cls.model_name, | |
| torch_dtype=torch.float16, | |
| device_map=cls.device_map, | |
| quantization_config=quantization_config, | |
| ) | |
| def test_memory_footprint(self): | |
| r""" | |
| A simple test to check if the model conversion has been done correctly by checking on the | |
| memory footprint of the converted model | |
| """ | |
| mem_quantized = self.quantized_model.get_memory_footprint() | |
| self.assertAlmostEqual(self.mem_fp16 / mem_quantized, self.EXPECTED_RELATIVE_DIFFERENCE) | |
| def test_quantized_layers_class(self): | |
| """ | |
| Simple test to check if the model conversion has been done correctly by checking on | |
| the class type of the linear layers of the converted models | |
| """ | |
| from auto_gptq.utils.import_utils import dynamically_import_QuantLinear | |
| QuantLinear = dynamically_import_QuantLinear( | |
| use_triton=False, | |
| desc_act=self.desc_act, | |
| group_size=self.group_size, | |
| bits=self.bits, | |
| disable_exllama=self.disable_exllama, | |
| ) | |
| self.assertTrue(self.quantized_model.transformer.h[0].mlp.dense_4h_to_h.__class__ == QuantLinear) | |
| def check_inference_correctness(self, model): | |
| r""" | |
| Test the generation quality of the quantized model and see that we are matching the expected output. | |
| Given that we are operating on small numbers + the testing model is relatively small, we might not get | |
| the same output across GPUs. So we'll generate few tokens (5-10) and check their output. | |
| """ | |
| # Check that inference pass works on the model | |
| encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
| # Check the exactness of the results | |
| output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) | |
| # Get the generation | |
| self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) | |
| def test_generate_quality(self): | |
| """ | |
| Simple test to check the quality of the model by comapring the the generated tokens with the expected tokens | |
| """ | |
| if self.device_map is None: | |
| self.check_inference_correctness(self.quantized_model.to(0)) | |
| else: | |
| self.check_inference_correctness(self.quantized_model) | |
| def test_serialization(self): | |
| """ | |
| Test the serialization of the model and the loading of the quantized weights works | |
| """ | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| self.quantized_model.save_pretrained(tmpdirname) | |
| if self.disable_exllama: | |
| quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname).to(0) | |
| else: | |
| # we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel | |
| quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map={"": 0}) | |
| self.check_inference_correctness(quantized_model_from_saved) | |
| def test_serialization_big_model_inference(self): | |
| """ | |
| Test the serialization of the model and the loading of the quantized weights with big model inference | |
| """ | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| self.quantized_model.save_pretrained(tmpdirname) | |
| quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map="auto") | |
| self.check_inference_correctness(quantized_model_from_saved) | |
| def test_change_loading_attributes(self): | |
| """ | |
| Test the serialization of the model and the loading of the quantized weights works with another config file | |
| """ | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| self.quantized_model.save_pretrained(tmpdirname) | |
| if self.disable_exllama: | |
| self.assertEqual(self.quantized_model.config.quantization_config.disable_exllama, True) | |
| # we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel | |
| quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( | |
| tmpdirname, quantization_config=GPTQConfig(disable_exllama=False, bits=4), device_map={"": 0} | |
| ) | |
| self.assertEqual(quantized_model_from_saved.config.quantization_config.disable_exllama, False) | |
| self.assertEqual(quantized_model_from_saved.config.quantization_config.bits, self.bits) | |
| self.check_inference_correctness(quantized_model_from_saved) | |
| class GPTQTestDeviceMap(GPTQTest): | |
| device_map = "auto" | |
| class GPTQTestDeviceMapExllama(GPTQTest): | |
| device_map = "auto" | |
| disable_exllama = False | |
| class GPTQTestActOrderExllama(unittest.TestCase): | |
| """ | |
| Test GPTQ model with exllama kernel and desc_act=True (also known as act-order). | |
| More information on those arguments here: | |
| https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig | |
| """ | |
| EXPECTED_OUTPUTS = set() | |
| EXPECTED_OUTPUTS.add("Hello my name is Katie and I am a 20 year") | |
| model_name = "hf-internal-testing/Llama-2-7B-GPTQ" | |
| revision = "gptq-4bit-128g-actorder_True" | |
| input_text = "Hello my name is" | |
| def setUpClass(cls): | |
| """ | |
| Setup quantized model | |
| """ | |
| cls.quantization_config = GPTQConfig(bits=4, disable_exllama=False, max_input_length=4028) | |
| cls.quantized_model = AutoModelForCausalLM.from_pretrained( | |
| cls.model_name, | |
| revision=cls.revision, | |
| torch_dtype=torch.float16, | |
| device_map={"": 0}, | |
| quantization_config=cls.quantization_config, | |
| ) | |
| cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True) | |
| def check_inference_correctness(self, model): | |
| """ | |
| Test the generation quality of the quantized model and see that we are matching the expected output. | |
| Given that we are operating on small numbers + the testing model is relatively small, we might not get | |
| the same output across GPUs. So we'll generate few tokens (5-10) and check their output. | |
| """ | |
| # Check that inference pass works on the model | |
| encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
| # Check the exactness of the results | |
| output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) | |
| # Get the generation | |
| self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) | |
| def test_generate_quality(self): | |
| """ | |
| Simple test to check the quality of the model by comapring the the generated tokens with the expected tokens | |
| """ | |
| self.check_inference_correctness(self.quantized_model) | |
| # this test will fail until the next release of optimum | |
| def test_max_input_length(self): | |
| """ | |
| Test if the max_input_length works. It modifies the maximum input length that of the model that runs with exllama backend. | |
| """ | |
| prompt = "I am in Paris and" * 1000 | |
| inp = self.tokenizer(prompt, return_tensors="pt").to(0) | |
| self.assertTrue(inp["input_ids"].shape[1] > 4028) | |
| with self.assertRaises(RuntimeError) as cm: | |
| self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3) | |
| self.assertTrue("temp_state buffer is too small" in str(cm.exception)) | |
| prompt = "I am in Paris and" * 500 | |
| inp = self.tokenizer(prompt, return_tensors="pt").to(0) | |
| self.assertTrue(inp["input_ids"].shape[1] < 4028) | |
| self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3) | |
| # fail when run all together | |
| class GPTQTestDeviceMapCPUOffload(GPTQTest): | |
| device_map = { | |
| "transformer.word_embeddings": 0, | |
| "transformer.word_embeddings_layernorm": 0, | |
| "lm_head": 0, | |
| "transformer.h.0": 0, | |
| "transformer.h.1": 0, | |
| "transformer.h.2": 0, | |
| "transformer.h.3": 0, | |
| "transformer.h.4": 0, | |
| "transformer.h.5": 0, | |
| "transformer.h.6": 0, | |
| "transformer.h.7": 0, | |
| "transformer.h.8": 0, | |
| "transformer.h.9": 0, | |
| "transformer.h.10": 1, | |
| "transformer.h.11": 1, | |
| "transformer.h.12": 1, | |
| "transformer.h.13": 1, | |
| "transformer.h.14": 1, | |
| "transformer.h.15": 1, | |
| "transformer.h.16": 1, | |
| "transformer.h.17": 0, | |
| "transformer.h.18": "cpu", | |
| "transformer.h.19": "cpu", | |
| "transformer.h.20": "cpu", | |
| "transformer.h.21": "cpu", | |
| "transformer.h.22": "cpu", | |
| "transformer.h.23": 1, | |
| "transformer.ln_f": 0, | |
| } | |