Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2022 The Hugging Face Team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| from transformers import MarkupLMConfig, is_torch_available | |
| from transformers.testing_utils import require_torch, slow, torch_device | |
| from transformers.utils import cached_property | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, ids_tensor | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import ( | |
| MarkupLMForQuestionAnswering, | |
| MarkupLMForSequenceClassification, | |
| MarkupLMForTokenClassification, | |
| MarkupLMModel, | |
| ) | |
| # TODO check dependencies | |
| from transformers import MarkupLMFeatureExtractor, MarkupLMProcessor, MarkupLMTokenizer | |
| class MarkupLMModelTester: | |
| """You can also import this e.g from .test_modeling_markuplm import MarkupLMModelTester""" | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| seq_length=7, | |
| is_training=True, | |
| use_input_mask=True, | |
| use_token_type_ids=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| hidden_size=32, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| num_labels=3, | |
| scope=None, | |
| max_xpath_tag_unit_embeddings=20, | |
| max_xpath_subs_unit_embeddings=30, | |
| tag_pad_id=2, | |
| subs_pad_id=2, | |
| max_depth=10, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_token_type_ids = use_token_type_ids | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.num_labels = num_labels | |
| self.scope = scope | |
| self.max_xpath_tag_unit_embeddings = max_xpath_tag_unit_embeddings | |
| self.max_xpath_subs_unit_embeddings = max_xpath_subs_unit_embeddings | |
| self.tag_pad_id = tag_pad_id | |
| self.subs_pad_id = subs_pad_id | |
| self.max_depth = max_depth | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| xpath_tags_seq = ids_tensor( | |
| [self.batch_size, self.seq_length, self.max_depth], self.max_xpath_tag_unit_embeddings | |
| ) | |
| xpath_subs_seq = ids_tensor( | |
| [self.batch_size, self.seq_length, self.max_depth], self.max_xpath_subs_unit_embeddings | |
| ) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
| token_type_ids = None | |
| if self.use_token_type_ids: | |
| token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
| sequence_labels = None | |
| token_labels = None | |
| if self.use_labels: | |
| sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
| config = self.get_config() | |
| return ( | |
| config, | |
| input_ids, | |
| xpath_tags_seq, | |
| xpath_subs_seq, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| ) | |
| def get_config(self): | |
| return MarkupLMConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| initializer_range=self.initializer_range, | |
| max_xpath_tag_unit_embeddings=self.max_xpath_tag_unit_embeddings, | |
| max_xpath_subs_unit_embeddings=self.max_xpath_subs_unit_embeddings, | |
| tag_pad_id=self.tag_pad_id, | |
| subs_pad_id=self.subs_pad_id, | |
| max_depth=self.max_depth, | |
| ) | |
| def create_and_check_model( | |
| self, | |
| config, | |
| input_ids, | |
| xpath_tags_seq, | |
| xpath_subs_seq, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| ): | |
| model = MarkupLMModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| print("Configs:", model.config.tag_pad_id, model.config.subs_pad_id) | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
| result = model(input_ids, token_type_ids=token_type_ids) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_for_sequence_classification( | |
| self, | |
| config, | |
| input_ids, | |
| xpath_tags_seq, | |
| xpath_subs_seq, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| ): | |
| config.num_labels = self.num_labels | |
| model = MarkupLMForSequenceClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| xpath_tags_seq=xpath_tags_seq, | |
| xpath_subs_seq=xpath_subs_seq, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| labels=sequence_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
| def create_and_check_for_token_classification( | |
| self, | |
| config, | |
| input_ids, | |
| xpath_tags_seq, | |
| xpath_subs_seq, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| ): | |
| config.num_labels = self.num_labels | |
| model = MarkupLMForTokenClassification(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| xpath_tags_seq=xpath_tags_seq, | |
| xpath_subs_seq=xpath_subs_seq, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| labels=token_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
| def create_and_check_for_question_answering( | |
| self, | |
| config, | |
| input_ids, | |
| xpath_tags_seq, | |
| xpath_subs_seq, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| ): | |
| model = MarkupLMForQuestionAnswering(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| xpath_tags_seq=xpath_tags_seq, | |
| xpath_subs_seq=xpath_subs_seq, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| start_positions=sequence_labels, | |
| end_positions=sequence_labels, | |
| ) | |
| self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
| self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| xpath_tags_seq, | |
| xpath_subs_seq, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| ) = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "xpath_tags_seq": xpath_tags_seq, | |
| "xpath_subs_seq": xpath_subs_seq, | |
| "token_type_ids": token_type_ids, | |
| "attention_mask": input_mask, | |
| } | |
| return config, inputs_dict | |
| class MarkupLMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = ( | |
| ( | |
| MarkupLMModel, | |
| MarkupLMForSequenceClassification, | |
| MarkupLMForTokenClassification, | |
| MarkupLMForQuestionAnswering, | |
| ) | |
| if is_torch_available() | |
| else None | |
| ) | |
| pipeline_model_mapping = ( | |
| { | |
| "feature-extraction": MarkupLMModel, | |
| "question-answering": MarkupLMForQuestionAnswering, | |
| "text-classification": MarkupLMForSequenceClassification, | |
| "token-classification": MarkupLMForTokenClassification, | |
| "zero-shot": MarkupLMForSequenceClassification, | |
| } | |
| if is_torch_available() | |
| else {} | |
| ) | |
| # TODO: Fix the failed tests | |
| def is_pipeline_test_to_skip( | |
| self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
| ): | |
| # ValueError: Nodes must be of type `List[str]` (single pretokenized example), or `List[List[str]]` | |
| # (batch of pretokenized examples). | |
| return True | |
| def setUp(self): | |
| self.model_tester = MarkupLMModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=MarkupLMConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_for_sequence_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
| def test_for_token_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
| def test_for_question_answering(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
| def prepare_html_string(): | |
| html_string = """ | |
| <!DOCTYPE html> | |
| <html> | |
| <head> | |
| <title>Page Title</title> | |
| </head> | |
| <body> | |
| <h1>This is a Heading</h1> | |
| <p>This is a paragraph.</p> | |
| </body> | |
| </html> | |
| """ | |
| return html_string | |
| class MarkupLMModelIntegrationTest(unittest.TestCase): | |
| def default_processor(self): | |
| # TODO use from_pretrained here | |
| feature_extractor = MarkupLMFeatureExtractor() | |
| tokenizer = MarkupLMTokenizer.from_pretrained("microsoft/markuplm-base") | |
| return MarkupLMProcessor(feature_extractor, tokenizer) | |
| def test_forward_pass_no_head(self): | |
| model = MarkupLMModel.from_pretrained("microsoft/markuplm-base").to(torch_device) | |
| processor = self.default_processor | |
| inputs = processor(prepare_html_string(), return_tensors="pt") | |
| inputs = inputs.to(torch_device) | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # verify the last hidden states | |
| expected_shape = torch.Size([1, 14, 768]) | |
| self.assertEqual(outputs.last_hidden_state.shape, expected_shape) | |
| expected_slice = torch.tensor( | |
| [[0.0675, -0.0052, 0.5001], [-0.2281, 0.0802, 0.2192], [-0.0583, -0.3311, 0.1185]] | |
| ).to(torch_device) | |
| self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) | |