Spaces:
Paused
Paused
| """ | |
| Framework agnostic tests for generate()-related methods. | |
| """ | |
| import numpy as np | |
| from transformers import AutoTokenizer | |
| from transformers.testing_utils import slow, torch_device | |
| class GenerationIntegrationTestsMixin: | |
| # To be populated by the child classes | |
| framework_dependent_parameters = { | |
| "AutoModelForCausalLM": None, | |
| "AutoModelForSpeechSeq2Seq": None, | |
| "AutoModelForSeq2SeqLM": None, | |
| "AutoModelForVision2Seq": None, | |
| "LogitsProcessorList": None, | |
| "MinLengthLogitsProcessor": None, | |
| "create_tensor_fn": None, | |
| "floats_tensor": None, | |
| "return_tensors": None, | |
| "set_seed": None, | |
| } | |
| def test_validate_generation_inputs(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| encoder_input_str = "Hello world" | |
| input_ids = tokenizer(encoder_input_str, return_tensors=return_tensors).input_ids | |
| # typos are quickly detected (the correct argument is `do_sample`) | |
| with self.assertRaisesRegex(ValueError, "do_samples"): | |
| model.generate(input_ids, do_samples=True) | |
| # arbitrary arguments that will not be used anywhere are also not accepted | |
| with self.assertRaisesRegex(ValueError, "foo"): | |
| fake_model_kwargs = {"foo": "bar"} | |
| model.generate(input_ids, **fake_model_kwargs) | |
| # however, valid model_kwargs are accepted | |
| valid_model_kwargs = {"attention_mask": create_tensor_fn(np.zeros_like(input_ids))} | |
| model.generate(input_ids, **valid_model_kwargs) | |
| def test_custom_logits_processor(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] | |
| logits_processor_list_cls = self.framework_dependent_parameters["LogitsProcessorList"] | |
| min_length_logits_processor_cls = self.framework_dependent_parameters["MinLengthLogitsProcessor"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") | |
| article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" | |
| bart_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", min_length=1) | |
| input_ids = bart_tokenizer(article, return_tensors=return_tensors).input_ids | |
| logits_processor = logits_processor_list_cls() | |
| logits_processor.append(min_length_logits_processor_cls(min_length=10, eos_token_id=0)) | |
| # it should not be allowed to both define `min_length` via config and `logits_processor` list | |
| with self.assertRaises(ValueError): | |
| bart_model.generate(input_ids, logits_processor=logits_processor) | |
| bart_model.config.min_length = None | |
| bart_model.generate(input_ids, logits_processor=logits_processor) | |
| def test_max_new_tokens_encoder_decoder(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" | |
| bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") | |
| bart_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart") | |
| input_ids = bart_tokenizer(article, return_tensors=return_tensors).input_ids | |
| if is_pt: | |
| bart_model = bart_model.to(torch_device) | |
| input_ids = input_ids.to(torch_device) | |
| self.assertEqual(list(input_ids.shape), [1, 29]) | |
| max_new_tokens = 3 | |
| bart_model.config.max_length = 20 | |
| bart_model.config.eos_token_id = None | |
| # Encoder decoder call | |
| outputs = bart_model.generate(input_ids, max_new_tokens=max_new_tokens) | |
| # 1 BOS + 3 new tokens | |
| self.assertEqual(list(outputs.shape), [1, 4]) | |
| # Decoder only call | |
| outputs = bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=max_new_tokens) | |
| # 1 BOS + 29 (input length) + 3 new tokens | |
| self.assertEqual(list(outputs.shape), [1, 33]) | |
| # Encoder decoder call > 20 | |
| outputs = bart_model.generate(max_new_tokens=max_new_tokens + 20) | |
| # 1 BOS + 20 + 3 new tokens | |
| self.assertEqual(list(outputs.shape), [1, 24]) | |
| def test_max_new_tokens_decoder_only(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| article = """Justin Timberlake.""" | |
| gpt2_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| gpt2_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| input_ids = gpt2_tokenizer(article, return_tensors=return_tensors).input_ids | |
| if is_pt: | |
| gpt2_model = gpt2_model.to(torch_device) | |
| input_ids = input_ids.to(torch_device) | |
| self.assertEqual(list(input_ids.shape), [1, 9]) | |
| max_new_tokens = 3 | |
| gpt2_model.config.max_length = 20 | |
| # call < 20 | |
| outputs = gpt2_model.generate(input_ids, max_new_tokens=max_new_tokens) | |
| # 9 input_ids + 3 new tokens | |
| self.assertEqual(list(outputs.shape), [1, 12]) | |
| # call > 20 | |
| outputs = gpt2_model.generate(max_new_tokens=max_new_tokens + 20) | |
| # 1 BOS token + 23 new tokens | |
| self.assertEqual(list(outputs.shape), [1, 24]) | |
| def test_encoder_decoder_generate_with_inputs_embeds(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5) | |
| model.config.eos_token_id = None | |
| input_ids = tokenizer(article, return_tensors=return_tensors).input_ids | |
| inputs_embeds = model.get_input_embeddings()(input_ids) | |
| output_sequences = model.generate(inputs_embeds=inputs_embeds) | |
| # make sure model generated correctly until `max_length` | |
| self.assertEqual(output_sequences.shape, (1, 5)) | |
| def test_transition_scores_greedy_search(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| articles = ["Justin Timberlake", "Michael Phelps"] | |
| tokenizer = AutoTokenizer.from_pretrained("distilgpt2", padding_side="left") | |
| tokenizer.pad_token = tokenizer.eos_token | |
| model = model_cls.from_pretrained("distilgpt2") | |
| input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids | |
| if is_pt: | |
| model = model.to(torch_device) | |
| input_ids = input_ids.to(torch_device) | |
| outputs = model.generate( | |
| input_ids=input_ids, | |
| max_new_tokens=5, | |
| pad_token_id=tokenizer.eos_token_id, | |
| eos_token_id=None, | |
| return_dict_in_generate=True, | |
| output_scores=True, | |
| ) | |
| transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores) | |
| if is_pt: | |
| transition_scores = transition_scores.cpu().numpy() | |
| expected_scores = np.array( | |
| [ | |
| [-57.8844, -60.45698, -70.16364, -65.50791, -66.35648], | |
| [-54.417572, -60.216614, -62.661243, -58.621933, -58.298683], | |
| ] | |
| ) | |
| self.assertTrue(np.allclose(transition_scores, expected_scores, atol=1e-3)) | |
| def test_transition_scores_greedy_search_normalized(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| articles = ["Justin Timberlake", "Michael Phelps"] | |
| tokenizer = AutoTokenizer.from_pretrained("distilgpt2", padding_side="left") | |
| tokenizer.pad_token = tokenizer.eos_token | |
| model = model_cls.from_pretrained("distilgpt2") | |
| input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids | |
| if is_pt: | |
| model = model.to(torch_device) | |
| input_ids = input_ids.to(torch_device) | |
| outputs = model.generate( | |
| input_ids=input_ids, | |
| max_new_tokens=5, | |
| pad_token_id=tokenizer.eos_token_id, | |
| eos_token_id=None, | |
| return_dict_in_generate=True, | |
| output_scores=True, | |
| ) | |
| transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True) | |
| if is_pt: | |
| transition_scores = transition_scores.cpu().numpy() | |
| expected_scores = np.array( | |
| [ | |
| [-2.538938, -2.2694316, -2.1580915, -1.572299, -2.6719835], | |
| [-1.8826028, -2.2461371, -1.7556462, -2.9644494, -1.7996008], | |
| ] | |
| ) | |
| self.assertTrue(np.allclose(transition_scores, expected_scores, atol=1e-3)) | |
| def test_transition_scores_beam_search_encoder_decoder(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| articles = [ | |
| "Justin Timberlake and Jessica Biel, welcome to parenthood.", | |
| "Michael Phelps is arguably the most decorated Olympian of all time.", | |
| ] | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") | |
| model = model_cls.from_pretrained( | |
| "hf-internal-testing/tiny-random-bart", | |
| max_length=10, | |
| num_beams=4, | |
| num_return_sequences=2, | |
| eos_token_id=None, | |
| return_dict_in_generate=True, | |
| output_scores=True, | |
| length_penalty=0.0, | |
| ) | |
| input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids | |
| if is_pt: | |
| model = model.to(torch_device) | |
| input_ids = input_ids.to(torch_device) | |
| outputs = model.generate(input_ids=input_ids) | |
| transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) | |
| if is_pt: | |
| transition_scores = transition_scores.cpu().numpy() | |
| outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() | |
| self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) | |
| def test_transition_scores_beam_search_encoder_decoder_with_eos(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| articles = [ | |
| "Justin Timberlake and Jessica Biel, welcome to parenthood.", | |
| "Michael Phelps is arguably the most decorated Olympian of all time.", | |
| ] | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") | |
| model = model_cls.from_pretrained( | |
| "hf-internal-testing/tiny-random-bart", | |
| max_length=10, | |
| num_beams=4, | |
| num_return_sequences=2, | |
| return_dict_in_generate=True, | |
| output_scores=True, | |
| length_penalty=0.0, | |
| ) | |
| input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids | |
| if is_pt: | |
| model = model.to(torch_device) | |
| input_ids = input_ids.to(torch_device) | |
| outputs = model.generate(input_ids=input_ids) | |
| transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) | |
| if is_pt: | |
| transition_scores = transition_scores.cpu().numpy() | |
| outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() | |
| self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) | |
| def test_transition_scores_beam_search_decoder_only(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| articles = [ | |
| "Justin Timberlake", | |
| "Michael Phelps", | |
| ] | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| tokenizer.pad_token = tokenizer.eos_token | |
| model = model_cls.from_pretrained( | |
| "hf-internal-testing/tiny-random-gpt2", | |
| max_length=10, | |
| num_beams=4, | |
| num_return_sequences=2, | |
| pad_token_id=tokenizer.eos_token_id, | |
| eos_token_id=None, | |
| return_dict_in_generate=True, | |
| output_scores=True, | |
| length_penalty=0.0, | |
| ) | |
| input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids | |
| if is_pt: | |
| model = model.to(torch_device) | |
| input_ids = input_ids.to(torch_device) | |
| outputs = model.generate(input_ids=input_ids) | |
| transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) | |
| if is_pt: | |
| transition_scores = transition_scores.cpu().numpy() | |
| outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() | |
| self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) | |
| def test_transition_scores_beam_sample_encoder_decoder(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| articles = [ | |
| "Justin Timberlake and Jessica Biel, welcome to parenthood.", | |
| "Michael Phelps is arguably the most decorated Olympian of all time.", | |
| ] | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") | |
| model = model_cls.from_pretrained( | |
| "hf-internal-testing/tiny-random-bart", | |
| do_sample=True, | |
| max_length=10, | |
| num_beams=4, | |
| num_return_sequences=2, | |
| eos_token_id=None, | |
| return_dict_in_generate=True, | |
| output_scores=True, | |
| length_penalty=0.0, | |
| ) | |
| input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids | |
| if is_pt: | |
| model = model.to(torch_device) | |
| input_ids = input_ids.to(torch_device) | |
| outputs = model.generate(input_ids=input_ids) | |
| transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) | |
| if is_pt: | |
| transition_scores = transition_scores.cpu().numpy() | |
| outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() | |
| self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) | |
| def test_transition_scores_early_stopping(self): | |
| # This is an aggressive test that makes sure that `beam_search's` | |
| # transition scores are computed correctly for varying `num_return_sequences`, `num_beams` and `batch_size > 1` | |
| # 2 x input_ids for "question: How are you? \n context: I had a long day, " | |
| model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] | |
| create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| input_ids = create_tensor_fn(2 * [[822, 10, 571, 33, 25, 58, 2625, 10, 27, 141, 3, 9, 307, 239, 6, 1]]) | |
| model = model_cls.from_pretrained("t5-small") | |
| if is_pt: | |
| model = model.to(torch_device) | |
| input_ids = input_ids.to(torch_device) | |
| outputs = model.generate( | |
| input_ids, | |
| max_length=10, | |
| return_dict_in_generate=True, | |
| output_scores=True, | |
| forced_eos_token_id=model.config.eos_token_id, | |
| num_beams=4, | |
| do_sample=False, | |
| num_return_sequences=3, | |
| length_penalty=0.0, | |
| ) | |
| transition_scores = model.compute_transition_scores( | |
| sequences=outputs.sequences, scores=outputs.scores, beam_indices=outputs.beam_indices | |
| ) | |
| if is_pt: | |
| transition_scores = transition_scores.cpu().numpy() | |
| outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() | |
| self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores)) | |
| def test_encoder_decoder_generate_attention_mask(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| articles = ["Timberlake", "Jessica Biel, welcome to parenthood among other things"] | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") | |
| # need extreme generation values here to force this test | |
| # to fail when `attention_mask` is not correctly treated in generate | |
| model = model_cls.from_pretrained( | |
| "hf-internal-testing/tiny-random-bart", max_length=50, num_beams=5, num_return_sequences=5 | |
| ) | |
| model.config.eos_token_id = None | |
| input_ids = tokenizer(articles[0], return_tensors=return_tensors).input_ids | |
| input_ids_batched = tokenizer(articles, padding=True, return_tensors=return_tensors).input_ids | |
| if is_pt: | |
| model = model.to(torch_device) | |
| input_ids = input_ids.to(torch_device) | |
| input_ids_batched = input_ids_batched.to(torch_device) | |
| output_sequences_batched = model.generate( | |
| input_ids=input_ids_batched, return_dict_in_generate=True, output_scores=True | |
| ) | |
| output_sequences = model.generate(input_ids=input_ids, return_dict_in_generate=True, output_scores=True) | |
| batched_out = output_sequences_batched.sequences_scores | |
| out = output_sequences.sequences_scores | |
| if is_pt: | |
| batched_out = batched_out.cpu().numpy() | |
| out = out.cpu().numpy() | |
| diff = np.abs(np.sum(batched_out[:5]) - np.sum(out)) | |
| self.assertTrue(diff < 1e-4) | |
| def test_generate_input_ids_as_kwarg(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| article = """I need input_ids to generate""" | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=15) | |
| input_ids = tokenizer(article, return_tensors=return_tensors).input_ids | |
| if is_pt: | |
| model = model.to(torch_device) | |
| input_ids = input_ids.to(torch_device) | |
| output_sequences_kwargs = model.generate(input_ids=input_ids) | |
| output_sequences = model.generate(input_ids) | |
| if is_pt: | |
| output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() | |
| output_sequences = output_sequences.cpu().numpy() | |
| self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) | |
| self.assertEqual(output_sequences.shape, (1, 15)) | |
| def test_generate_input_ids_as_encoder_kwarg(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5) | |
| model.config.eos_token_id = None | |
| input_ids = tokenizer(article, return_tensors=return_tensors).input_ids | |
| if is_pt: | |
| model = model.to(torch_device) | |
| input_ids = input_ids.to(torch_device) | |
| output_sequences_kwargs = model.generate(input_ids=input_ids) | |
| output_sequences = model.generate(input_ids) | |
| if is_pt: | |
| output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() | |
| output_sequences = output_sequences.cpu().numpy() | |
| self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) | |
| self.assertEqual(output_sequences.shape, (1, 5)) | |
| def test_generate_inputs_and_encoder_kwargs(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| article = """I need input_ids to generate""" | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10) | |
| input_ids = tokenizer(article, return_tensors=return_tensors).input_ids | |
| with self.assertRaises(ValueError): | |
| model.generate(input_ids, input_ids=input_ids) | |
| def test_generate_too_many_encoder_kwargs(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| article = """I need input_ids to generate""" | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=10) | |
| input_ids = tokenizer(article, return_tensors=return_tensors).input_ids | |
| with self.assertRaises(ValueError): | |
| model.generate(input_ids=input_ids, inputs_embeds=input_ids) | |
| def test_generate_input_features_as_encoder_kwarg(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForSpeechSeq2Seq"] | |
| floats_tensor = self.framework_dependent_parameters["floats_tensor"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| input_features = floats_tensor((3, 80, 60)) | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-WhisperForConditionalGeneration") | |
| if is_pt: | |
| input_features.to(torch_device) | |
| model = model.to(torch_device) | |
| output_sequences_kwargs = model.generate(input_features=input_features, max_length=5) | |
| output_sequences = model.generate(input_features, max_length=5) | |
| if is_pt: | |
| output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() | |
| output_sequences = output_sequences.cpu().numpy() | |
| self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) | |
| self.assertEqual(output_sequences.shape, (3, 5)) | |
| def test_generate_pixel_values_as_encoder_kwarg(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForVision2Seq"] | |
| floats_tensor = self.framework_dependent_parameters["floats_tensor"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| pixel_values = floats_tensor((2, 3, 30, 30)) | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-VisionEncoderDecoderModel-vit-gpt2") | |
| model.config.decoder.eos_token_id = None | |
| if is_pt: | |
| pixel_values = pixel_values.to(torch_device) | |
| model = model.to(torch_device) | |
| output_sequences_kwargs = model.generate(pixel_values=pixel_values, max_length=5) | |
| output_sequences = model.generate(pixel_values, max_length=5) | |
| if is_pt: | |
| output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() | |
| output_sequences = output_sequences.cpu().numpy() | |
| self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) | |
| self.assertEqual(output_sequences.shape, (2, 5)) | |
| def test_generate_encoder_outputs_attention_mask(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForSpeechSeq2Seq"] | |
| floats_tensor = self.framework_dependent_parameters["floats_tensor"] | |
| create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| input_features = floats_tensor((3, 80, 60)) | |
| attention_mask = create_tensor_fn(np.ones(input_features.shape)) | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-WhisperForConditionalGeneration") | |
| if is_pt: | |
| input_features = input_features.to(torch_device) | |
| attention_mask = attention_mask.to(torch_device) | |
| model = model.to(torch_device) | |
| encoder = model.get_encoder() | |
| encoder_outputs = encoder(input_features) | |
| output_sequences_no_mask = model.generate(encoder_outputs=encoder_outputs) | |
| output_sequences_with_mask = model.generate(encoder_outputs=encoder_outputs, attention_mask=attention_mask) | |
| if is_pt: | |
| output_sequences_no_mask = output_sequences_no_mask.cpu().numpy() | |
| output_sequences_with_mask = output_sequences_with_mask.cpu().numpy() | |
| self.assertTrue(np.array_equal(output_sequences_no_mask, output_sequences_with_mask)) | |
| def test_eos_token_id_int_and_list_greedy_search(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| generation_kwargs = { | |
| "do_sample": False, | |
| "num_beams": 1, | |
| } | |
| expectation = 13 | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| text = """Hello, my dog is cute and""" | |
| tokens = tokenizer(text, return_tensors=return_tensors) | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| if is_pt: | |
| model = model.to(torch_device) | |
| tokens = tokens.to(torch_device) | |
| eos_token_id = 873 | |
| generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) | |
| self.assertTrue(expectation == len(generated_tokens[0])) | |
| eos_token_id = [873, 198] | |
| generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) | |
| self.assertTrue(expectation == len(generated_tokens[0])) | |
| def test_eos_token_id_int_and_list_contrastive_search(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| generation_kwargs = { | |
| "do_sample": False, | |
| "num_beams": 1, | |
| "penalty_alpha": 0.6, | |
| "top_k": 4, | |
| } | |
| expectation = 17 | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| text = """Hello, my dog is cute and""" | |
| tokens = tokenizer(text, return_tensors=return_tensors) | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| if is_pt: | |
| model = model.to(torch_device) | |
| tokens = tokens.to(torch_device) | |
| eos_token_id = 225 | |
| generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) | |
| self.assertTrue(expectation == len(generated_tokens[0])) | |
| eos_token_id = [225, 198] | |
| generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) | |
| self.assertTrue(expectation == len(generated_tokens[0])) | |
| def test_eos_token_id_int_and_list_beam_search(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] | |
| return_tensors = self.framework_dependent_parameters["return_tensors"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| generation_kwargs = { | |
| "do_sample": False, | |
| "num_beams": 3, | |
| } | |
| expectation = 13 | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| text = """Hello, my dog is cute and""" | |
| tokens = tokenizer(text, return_tensors=return_tensors) | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| if is_pt: | |
| model = model.to(torch_device) | |
| tokens = tokens.to(torch_device) | |
| eos_token_id = 873 | |
| generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) | |
| unpadded_correct_condition = expectation == len(generated_tokens[0]) | |
| padded_correct_condition = expectation < len(generated_tokens[0]) and all( | |
| token == model.config.pad_token_id for token in generated_tokens[0][expectation:] | |
| ) | |
| self.assertTrue(unpadded_correct_condition or padded_correct_condition) | |
| eos_token_id = [873, 198] | |
| generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) | |
| unpadded_correct_condition = expectation == len(generated_tokens[0]) | |
| padded_correct_condition = expectation < len(generated_tokens[0]) and all( | |
| token == model.config.pad_token_id for token in generated_tokens[0][expectation:] | |
| ) | |
| self.assertTrue(unpadded_correct_condition or padded_correct_condition) | |
| def test_generate_vision2text_conditioning(self): | |
| model_cls = self.framework_dependent_parameters["AutoModelForVision2Seq"] | |
| floats_tensor = self.framework_dependent_parameters["floats_tensor"] | |
| create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] | |
| is_pt = not model_cls.__name__.startswith("TF") | |
| pixel_values = floats_tensor((2, 3, 30, 30)) | |
| conditioning_input = create_tensor_fn([[10], [10]]) # this should be the 2nd output token, after the BOS token | |
| model = model_cls.from_pretrained("hf-internal-testing/tiny-random-VisionEncoderDecoderModel-vit-gpt2") | |
| if is_pt: | |
| pixel_values = pixel_values.to(torch_device) | |
| model = model.to(torch_device) | |
| conditioning_input = conditioning_input.to(torch_device) | |
| # we can condition on decoder_input_ids (expected decoder input) and input_ids (which we pipe internally as | |
| # decoder_input_ids, if the encoder is not a model with text input) | |
| output_sequences_decoder_input_ids = model.generate( | |
| pixel_values, max_length=5, decoder_input_ids=conditioning_input | |
| ) | |
| output_sequences_input_ids = model.generate(pixel_values, max_length=5, input_ids=conditioning_input) | |
| if is_pt: | |
| output_sequences_decoder_input_ids = output_sequences_decoder_input_ids.cpu().numpy() | |
| output_sequences_input_ids = output_sequences_input_ids.cpu().numpy() | |
| conditioning_input = conditioning_input.cpu().numpy() | |
| self.assertTrue(np.array_equal(output_sequences_decoder_input_ids, output_sequences_input_ids)) | |
| self.assertTrue(np.array_equal(output_sequences_decoder_input_ids[:, 1:2], conditioning_input)) | |