Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| import argparse | |
| import datetime | |
| import json | |
| import time | |
| import warnings | |
| from logging import getLogger | |
| from pathlib import Path | |
| from typing import Dict, List | |
| import torch | |
| from tqdm import tqdm | |
| from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params | |
| logger = getLogger(__name__) | |
| DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| def generate_summaries_or_translations( | |
| examples: List[str], | |
| out_file: str, | |
| model_name: str, | |
| batch_size: int = 8, | |
| device: str = DEFAULT_DEVICE, | |
| fp16=False, | |
| task="summarization", | |
| prefix=None, | |
| **generate_kwargs, | |
| ) -> Dict: | |
| """Save model.generate results to <out_file>, and return how long it took.""" | |
| fout = Path(out_file).open("w", encoding="utf-8") | |
| model_name = str(model_name) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) | |
| if fp16: | |
| model = model.half() | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| logger.info(f"Inferred tokenizer type: {tokenizer.__class__}") # if this is wrong, check config.model_type. | |
| start_time = time.time() | |
| # update config with task specific params | |
| use_task_specific_params(model, task) | |
| if prefix is None: | |
| prefix = prefix or getattr(model.config, "prefix", "") or "" | |
| for examples_chunk in tqdm(list(chunks(examples, batch_size))): | |
| examples_chunk = [prefix + text for text in examples_chunk] | |
| batch = tokenizer(examples_chunk, return_tensors="pt", truncation=True, padding="longest").to(device) | |
| summaries = model.generate( | |
| input_ids=batch.input_ids, | |
| attention_mask=batch.attention_mask, | |
| **generate_kwargs, | |
| ) | |
| dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
| for hypothesis in dec: | |
| fout.write(hypothesis + "\n") | |
| fout.flush() | |
| fout.close() | |
| runtime = int(time.time() - start_time) # seconds | |
| n_obs = len(examples) | |
| return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs, 4)} | |
| def datetime_now(): | |
| return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| def run_generate(verbose=True): | |
| """ | |
| Takes input text, generates output, and then using reference calculates the BLEU scores. | |
| The results are saved to a file and returned to the caller, and printed out unless ``verbose=False`` is passed. | |
| Args: | |
| verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): print results to stdout | |
| Returns: | |
| a tuple: ``(scores, params}`` | |
| - ``scores``: a dict of scores data ``{'bleu': 39.6501, 'n_obs': 2000, 'runtime': 186, 'seconds_per_sample': 0.093}`` | |
| - ``params``: a dict of custom params, e.g. ``{'num_beams': 5, 'length_penalty': 0.8}`` | |
| """ | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("model_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.") | |
| parser.add_argument("input_path", type=str, help="like cnn_dm/test.source") | |
| parser.add_argument("save_path", type=str, help="where to save summaries") | |
| parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test.target") | |
| parser.add_argument("--score_path", type=str, required=False, default="metrics.json", help="where to save metrics") | |
| parser.add_argument("--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.") | |
| parser.add_argument( | |
| "--prefix", type=str, required=False, default=None, help="will be added to the begininng of src examples" | |
| ) | |
| parser.add_argument("--task", type=str, default="summarization", help="used for task_specific_params + metrics") | |
| parser.add_argument("--bs", type=int, default=8, required=False, help="batch size") | |
| parser.add_argument( | |
| "--n_obs", type=int, default=-1, required=False, help="How many observations. Defaults to all." | |
| ) | |
| parser.add_argument("--fp16", action="store_true") | |
| parser.add_argument("--dump-args", action="store_true", help="print the custom hparams with the results") | |
| parser.add_argument( | |
| "--info", | |
| nargs="?", | |
| type=str, | |
| const=datetime_now(), | |
| help=( | |
| "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." | |
| " lang=en-ru. If no value is passed, the current datetime string will be used." | |
| ), | |
| ) | |
| # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate | |
| args, rest = parser.parse_known_args() | |
| parsed_args = parse_numeric_n_bool_cl_kwargs(rest) | |
| if parsed_args and verbose: | |
| print(f"parsed the following generate kwargs: {parsed_args}") | |
| with open(args.input_path) as f: | |
| examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in f.readlines()] | |
| if args.n_obs > 0: | |
| examples = examples[: args.n_obs] | |
| Path(args.save_path).parent.mkdir(exist_ok=True) | |
| if args.reference_path is None and Path(args.score_path).exists(): | |
| warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c.") | |
| runtime_metrics = generate_summaries_or_translations( | |
| examples, | |
| args.save_path, | |
| args.model_name, | |
| batch_size=args.bs, | |
| device=args.device, | |
| fp16=args.fp16, | |
| task=args.task, | |
| prefix=args.prefix, | |
| **parsed_args, | |
| ) | |
| if args.reference_path is None: | |
| return {} | |
| # Compute scores | |
| score_fn = calculate_bleu if "translation" in args.task else calculate_rouge | |
| output_lns = [x.rstrip() for x in open(args.save_path).readlines()] | |
| reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][: len(output_lns)] | |
| scores: dict = score_fn(output_lns, reference_lns) | |
| scores.update(runtime_metrics) | |
| if args.dump_args: | |
| scores.update(parsed_args) | |
| if args.info: | |
| scores["info"] = args.info | |
| if verbose: | |
| print(scores) | |
| if args.score_path is not None: | |
| json.dump(scores, open(args.score_path, "w")) | |
| return scores | |
| if __name__ == "__main__": | |
| # Usage for MT: | |
| # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ | |
| run_generate(verbose=True) | |