Spaces:
Paused
Paused
| import argparse | |
| import logging | |
| import os | |
| from pathlib import Path | |
| from typing import Any, Dict | |
| import pytorch_lightning as pl | |
| from pytorch_lightning.utilities import rank_zero_info | |
| from transformers import ( | |
| AdamW, | |
| AutoConfig, | |
| AutoModel, | |
| AutoModelForPreTraining, | |
| AutoModelForQuestionAnswering, | |
| AutoModelForSeq2SeqLM, | |
| AutoModelForSequenceClassification, | |
| AutoModelForTokenClassification, | |
| AutoModelWithLMHead, | |
| AutoTokenizer, | |
| PretrainedConfig, | |
| PreTrainedTokenizer, | |
| ) | |
| from transformers.optimization import ( | |
| Adafactor, | |
| get_cosine_schedule_with_warmup, | |
| get_cosine_with_hard_restarts_schedule_with_warmup, | |
| get_linear_schedule_with_warmup, | |
| get_polynomial_decay_schedule_with_warmup, | |
| ) | |
| from transformers.utils.versions import require_version | |
| logger = logging.getLogger(__name__) | |
| require_version("pytorch_lightning>=1.0.4") | |
| MODEL_MODES = { | |
| "base": AutoModel, | |
| "sequence-classification": AutoModelForSequenceClassification, | |
| "question-answering": AutoModelForQuestionAnswering, | |
| "pretraining": AutoModelForPreTraining, | |
| "token-classification": AutoModelForTokenClassification, | |
| "language-modeling": AutoModelWithLMHead, | |
| "summarization": AutoModelForSeq2SeqLM, | |
| "translation": AutoModelForSeq2SeqLM, | |
| } | |
| # update this and the import above to support new schedulers from transformers.optimization | |
| arg_to_scheduler = { | |
| "linear": get_linear_schedule_with_warmup, | |
| "cosine": get_cosine_schedule_with_warmup, | |
| "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, | |
| "polynomial": get_polynomial_decay_schedule_with_warmup, | |
| # '': get_constant_schedule, # not supported for now | |
| # '': get_constant_schedule_with_warmup, # not supported for now | |
| } | |
| arg_to_scheduler_choices = sorted(arg_to_scheduler.keys()) | |
| arg_to_scheduler_metavar = "{" + ", ".join(arg_to_scheduler_choices) + "}" | |
| class BaseTransformer(pl.LightningModule): | |
| def __init__( | |
| self, | |
| hparams: argparse.Namespace, | |
| num_labels=None, | |
| mode="base", | |
| config=None, | |
| tokenizer=None, | |
| model=None, | |
| **config_kwargs, | |
| ): | |
| """Initialize a model, tokenizer and config.""" | |
| super().__init__() | |
| # TODO: move to self.save_hyperparameters() | |
| # self.save_hyperparameters() | |
| # can also expand arguments into trainer signature for easier reading | |
| self.save_hyperparameters(hparams) | |
| self.step_count = 0 | |
| self.output_dir = Path(self.hparams.output_dir) | |
| cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None | |
| if config is None: | |
| self.config = AutoConfig.from_pretrained( | |
| self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, | |
| **({"num_labels": num_labels} if num_labels is not None else {}), | |
| cache_dir=cache_dir, | |
| **config_kwargs, | |
| ) | |
| else: | |
| self.config: PretrainedConfig = config | |
| extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") | |
| for p in extra_model_params: | |
| if getattr(self.hparams, p, None): | |
| assert hasattr(self.config, p), f"model config doesn't have a `{p}` attribute" | |
| setattr(self.config, p, getattr(self.hparams, p)) | |
| if tokenizer is None: | |
| self.tokenizer = AutoTokenizer.from_pretrained( | |
| self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, | |
| cache_dir=cache_dir, | |
| ) | |
| else: | |
| self.tokenizer: PreTrainedTokenizer = tokenizer | |
| self.model_type = MODEL_MODES[mode] | |
| if model is None: | |
| self.model = self.model_type.from_pretrained( | |
| self.hparams.model_name_or_path, | |
| from_tf=bool(".ckpt" in self.hparams.model_name_or_path), | |
| config=self.config, | |
| cache_dir=cache_dir, | |
| ) | |
| else: | |
| self.model = model | |
| def load_hf_checkpoint(self, *args, **kwargs): | |
| self.model = self.model_type.from_pretrained(*args, **kwargs) | |
| def get_lr_scheduler(self): | |
| get_schedule_func = arg_to_scheduler[self.hparams.lr_scheduler] | |
| scheduler = get_schedule_func( | |
| self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps() | |
| ) | |
| scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1} | |
| return scheduler | |
| def configure_optimizers(self): | |
| """Prepare optimizer and schedule (linear warmup and decay)""" | |
| model = self.model | |
| no_decay = ["bias", "LayerNorm.weight"] | |
| optimizer_grouped_parameters = [ | |
| { | |
| "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], | |
| "weight_decay": self.hparams.weight_decay, | |
| }, | |
| { | |
| "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], | |
| "weight_decay": 0.0, | |
| }, | |
| ] | |
| if self.hparams.adafactor: | |
| optimizer = Adafactor( | |
| optimizer_grouped_parameters, lr=self.hparams.learning_rate, scale_parameter=False, relative_step=False | |
| ) | |
| else: | |
| optimizer = AdamW( | |
| optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon | |
| ) | |
| self.opt = optimizer | |
| scheduler = self.get_lr_scheduler() | |
| return [optimizer], [scheduler] | |
| def test_step(self, batch, batch_nb): | |
| return self.validation_step(batch, batch_nb) | |
| def test_epoch_end(self, outputs): | |
| return self.validation_end(outputs) | |
| def total_steps(self) -> int: | |
| """The number of total training steps that will be run. Used for lr scheduler purposes.""" | |
| num_devices = max(1, self.hparams.gpus) # TODO: consider num_tpu_cores | |
| effective_batch_size = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices | |
| return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs | |
| def setup(self, mode): | |
| if mode == "test": | |
| self.dataset_size = len(self.test_dataloader().dataset) | |
| else: | |
| self.train_loader = self.get_dataloader("train", self.hparams.train_batch_size, shuffle=True) | |
| self.dataset_size = len(self.train_dataloader().dataset) | |
| def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False): | |
| raise NotImplementedError("You must implement this for your task") | |
| def train_dataloader(self): | |
| return self.train_loader | |
| def val_dataloader(self): | |
| return self.get_dataloader("dev", self.hparams.eval_batch_size, shuffle=False) | |
| def test_dataloader(self): | |
| return self.get_dataloader("test", self.hparams.eval_batch_size, shuffle=False) | |
| def _feature_file(self, mode): | |
| return os.path.join( | |
| self.hparams.data_dir, | |
| "cached_{}_{}_{}".format( | |
| mode, | |
| list(filter(None, self.hparams.model_name_or_path.split("/"))).pop(), | |
| str(self.hparams.max_seq_length), | |
| ), | |
| ) | |
| def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: | |
| save_path = self.output_dir.joinpath("best_tfmr") | |
| self.model.config.save_step = self.step_count | |
| self.model.save_pretrained(save_path) | |
| self.tokenizer.save_pretrained(save_path) | |
| def add_model_specific_args(parser, root_dir): | |
| parser.add_argument( | |
| "--model_name_or_path", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models", | |
| ) | |
| parser.add_argument( | |
| "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" | |
| ) | |
| parser.add_argument( | |
| "--tokenizer_name", | |
| default=None, | |
| type=str, | |
| help="Pretrained tokenizer name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| default="", | |
| type=str, | |
| help="Where do you want to store the pre-trained models downloaded from huggingface.co", | |
| ) | |
| parser.add_argument( | |
| "--encoder_layerdrop", | |
| type=float, | |
| help="Encoder layer dropout probability (Optional). Goes into model.config", | |
| ) | |
| parser.add_argument( | |
| "--decoder_layerdrop", | |
| type=float, | |
| help="Decoder layer dropout probability (Optional). Goes into model.config", | |
| ) | |
| parser.add_argument( | |
| "--dropout", | |
| type=float, | |
| help="Dropout probability (Optional). Goes into model.config", | |
| ) | |
| parser.add_argument( | |
| "--attention_dropout", | |
| type=float, | |
| help="Attention dropout probability (Optional). Goes into model.config", | |
| ) | |
| parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| default="linear", | |
| choices=arg_to_scheduler_choices, | |
| metavar=arg_to_scheduler_metavar, | |
| type=str, | |
| help="Learning rate scheduler", | |
| ) | |
| parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") | |
| parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") | |
| parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") | |
| parser.add_argument("--num_workers", default=4, type=int, help="kwarg passed to DataLoader") | |
| parser.add_argument("--num_train_epochs", dest="max_epochs", default=3, type=int) | |
| parser.add_argument("--train_batch_size", default=32, type=int) | |
| parser.add_argument("--eval_batch_size", default=32, type=int) | |
| parser.add_argument("--adafactor", action="store_true") | |
| class LoggingCallback(pl.Callback): | |
| def on_batch_end(self, trainer, pl_module): | |
| lr_scheduler = trainer.lr_schedulers[0]["scheduler"] | |
| lrs = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())} | |
| pl_module.logger.log_metrics(lrs) | |
| def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): | |
| rank_zero_info("***** Validation results *****") | |
| metrics = trainer.callback_metrics | |
| # Log results | |
| for key in sorted(metrics): | |
| if key not in ["log", "progress_bar"]: | |
| rank_zero_info("{} = {}\n".format(key, str(metrics[key]))) | |
| def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): | |
| rank_zero_info("***** Test results *****") | |
| metrics = trainer.callback_metrics | |
| # Log and save results to file | |
| output_test_results_file = os.path.join(pl_module.hparams.output_dir, "test_results.txt") | |
| with open(output_test_results_file, "w") as writer: | |
| for key in sorted(metrics): | |
| if key not in ["log", "progress_bar"]: | |
| rank_zero_info("{} = {}\n".format(key, str(metrics[key]))) | |
| writer.write("{} = {}\n".format(key, str(metrics[key]))) | |
| def add_generic_args(parser, root_dir) -> None: | |
| # To allow all pl args uncomment the following line | |
| # parser = pl.Trainer.add_argparse_args(parser) | |
| parser.add_argument( | |
| "--output_dir", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument( | |
| "--fp16", | |
| action="store_true", | |
| help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", | |
| ) | |
| parser.add_argument( | |
| "--fp16_opt_level", | |
| type=str, | |
| default="O2", | |
| help=( | |
| "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
| "See details at https://nvidia.github.io/apex/amp.html" | |
| ), | |
| ) | |
| parser.add_argument("--n_tpu_cores", dest="tpu_cores", type=int) | |
| parser.add_argument("--max_grad_norm", dest="gradient_clip_val", default=1.0, type=float, help="Max gradient norm") | |
| parser.add_argument("--do_train", action="store_true", help="Whether to run training.") | |
| parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| dest="accumulate_grad_batches", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") | |
| parser.add_argument( | |
| "--data_dir", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", | |
| ) | |
| def generic_train( | |
| model: BaseTransformer, | |
| args: argparse.Namespace, | |
| early_stopping_callback=None, | |
| logger=True, # can pass WandbLogger() here | |
| extra_callbacks=[], | |
| checkpoint_callback=None, | |
| logging_callback=None, | |
| **extra_train_kwargs, | |
| ): | |
| pl.seed_everything(args.seed) | |
| # init model | |
| odir = Path(model.hparams.output_dir) | |
| odir.mkdir(exist_ok=True) | |
| # add custom checkpoints | |
| if checkpoint_callback is None: | |
| checkpoint_callback = pl.callbacks.ModelCheckpoint( | |
| filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=1 | |
| ) | |
| if early_stopping_callback: | |
| extra_callbacks.append(early_stopping_callback) | |
| if logging_callback is None: | |
| logging_callback = LoggingCallback() | |
| train_params = {} | |
| # TODO: remove with PyTorch 1.6 since pl uses native amp | |
| if args.fp16: | |
| train_params["precision"] = 16 | |
| train_params["amp_level"] = args.fp16_opt_level | |
| if args.gpus > 1: | |
| train_params["distributed_backend"] = "ddp" | |
| train_params["accumulate_grad_batches"] = args.accumulate_grad_batches | |
| train_params["accelerator"] = extra_train_kwargs.get("accelerator", None) | |
| train_params["profiler"] = extra_train_kwargs.get("profiler", None) | |
| trainer = pl.Trainer.from_argparse_args( | |
| args, | |
| weights_summary=None, | |
| callbacks=[logging_callback] + extra_callbacks, | |
| logger=logger, | |
| checkpoint_callback=checkpoint_callback, | |
| **train_params, | |
| ) | |
| if args.do_train: | |
| trainer.fit(model) | |
| return trainer | |