Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2018 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Fine-tuning the library models for named entity recognition.""" | |
| import logging | |
| import os | |
| from dataclasses import dataclass, field | |
| from importlib import import_module | |
| from typing import Dict, List, Optional, Tuple | |
| import numpy as np | |
| from seqeval.metrics import classification_report, f1_score, precision_score, recall_score | |
| from utils_ner import Split, TFTokenClassificationDataset, TokenClassificationTask | |
| from transformers import ( | |
| AutoConfig, | |
| AutoTokenizer, | |
| EvalPrediction, | |
| HfArgumentParser, | |
| TFAutoModelForTokenClassification, | |
| TFTrainer, | |
| TFTrainingArguments, | |
| ) | |
| from transformers.utils import logging as hf_logging | |
| hf_logging.set_verbosity_info() | |
| hf_logging.enable_default_handler() | |
| hf_logging.enable_explicit_format() | |
| logger = logging.getLogger(__name__) | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| task_type: Optional[str] = field( | |
| default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) | |
| # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, | |
| # or just modify its tokenizer_config.json. | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| data_dir: str = field( | |
| metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} | |
| ) | |
| labels: Optional[str] = field( | |
| metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} | |
| ) | |
| max_seq_length: int = field( | |
| default=128, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| if ( | |
| os.path.exists(training_args.output_dir) | |
| and os.listdir(training_args.output_dir) | |
| and training_args.do_train | |
| and not training_args.overwrite_output_dir | |
| ): | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" | |
| " --overwrite_output_dir to overcome." | |
| ) | |
| module = import_module("tasks") | |
| try: | |
| token_classification_task_clazz = getattr(module, model_args.task_type) | |
| token_classification_task: TokenClassificationTask = token_classification_task_clazz() | |
| except AttributeError: | |
| raise ValueError( | |
| f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " | |
| f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" | |
| ) | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info( | |
| "n_replicas: %s, distributed training: %s, 16-bits training: %s", | |
| training_args.n_replicas, | |
| bool(training_args.n_replicas > 1), | |
| training_args.fp16, | |
| ) | |
| logger.info("Training/evaluation parameters %s", training_args) | |
| # Prepare Token Classification task | |
| labels = token_classification_task.get_labels(data_args.labels) | |
| label_map: Dict[int, str] = dict(enumerate(labels)) | |
| num_labels = len(labels) | |
| # Load pretrained model and tokenizer | |
| # | |
| # Distributed training: | |
| # The .from_pretrained methods guarantee that only one local process can concurrently | |
| # download model & vocab. | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
| num_labels=num_labels, | |
| id2label=label_map, | |
| label2id={label: i for i, label in enumerate(labels)}, | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=model_args.use_fast, | |
| ) | |
| with training_args.strategy.scope(): | |
| model = TFAutoModelForTokenClassification.from_pretrained( | |
| model_args.model_name_or_path, | |
| from_pt=bool(".bin" in model_args.model_name_or_path), | |
| config=config, | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| # Get datasets | |
| train_dataset = ( | |
| TFTokenClassificationDataset( | |
| token_classification_task=token_classification_task, | |
| data_dir=data_args.data_dir, | |
| tokenizer=tokenizer, | |
| labels=labels, | |
| model_type=config.model_type, | |
| max_seq_length=data_args.max_seq_length, | |
| overwrite_cache=data_args.overwrite_cache, | |
| mode=Split.train, | |
| ) | |
| if training_args.do_train | |
| else None | |
| ) | |
| eval_dataset = ( | |
| TFTokenClassificationDataset( | |
| token_classification_task=token_classification_task, | |
| data_dir=data_args.data_dir, | |
| tokenizer=tokenizer, | |
| labels=labels, | |
| model_type=config.model_type, | |
| max_seq_length=data_args.max_seq_length, | |
| overwrite_cache=data_args.overwrite_cache, | |
| mode=Split.dev, | |
| ) | |
| if training_args.do_eval | |
| else None | |
| ) | |
| def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]: | |
| preds = np.argmax(predictions, axis=2) | |
| batch_size, seq_len = preds.shape | |
| out_label_list = [[] for _ in range(batch_size)] | |
| preds_list = [[] for _ in range(batch_size)] | |
| for i in range(batch_size): | |
| for j in range(seq_len): | |
| if label_ids[i, j] != -100: | |
| out_label_list[i].append(label_map[label_ids[i][j]]) | |
| preds_list[i].append(label_map[preds[i][j]]) | |
| return preds_list, out_label_list | |
| def compute_metrics(p: EvalPrediction) -> Dict: | |
| preds_list, out_label_list = align_predictions(p.predictions, p.label_ids) | |
| return { | |
| "precision": precision_score(out_label_list, preds_list), | |
| "recall": recall_score(out_label_list, preds_list), | |
| "f1": f1_score(out_label_list, preds_list), | |
| } | |
| # Initialize our Trainer | |
| trainer = TFTrainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_dataset.get_dataset() if train_dataset else None, | |
| eval_dataset=eval_dataset.get_dataset() if eval_dataset else None, | |
| compute_metrics=compute_metrics, | |
| ) | |
| # Training | |
| if training_args.do_train: | |
| trainer.train() | |
| trainer.save_model() | |
| tokenizer.save_pretrained(training_args.output_dir) | |
| # Evaluation | |
| results = {} | |
| if training_args.do_eval: | |
| logger.info("*** Evaluate ***") | |
| result = trainer.evaluate() | |
| output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") | |
| with open(output_eval_file, "w") as writer: | |
| logger.info("***** Eval results *****") | |
| for key, value in result.items(): | |
| logger.info(" %s = %s", key, value) | |
| writer.write("%s = %s\n" % (key, value)) | |
| results.update(result) | |
| # Predict | |
| if training_args.do_predict: | |
| test_dataset = TFTokenClassificationDataset( | |
| token_classification_task=token_classification_task, | |
| data_dir=data_args.data_dir, | |
| tokenizer=tokenizer, | |
| labels=labels, | |
| model_type=config.model_type, | |
| max_seq_length=data_args.max_seq_length, | |
| overwrite_cache=data_args.overwrite_cache, | |
| mode=Split.test, | |
| ) | |
| predictions, label_ids, metrics = trainer.predict(test_dataset.get_dataset()) | |
| preds_list, labels_list = align_predictions(predictions, label_ids) | |
| report = classification_report(labels_list, preds_list) | |
| logger.info("\n%s", report) | |
| output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt") | |
| with open(output_test_results_file, "w") as writer: | |
| writer.write("%s\n" % report) | |
| # Save predictions | |
| output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt") | |
| with open(output_test_predictions_file, "w") as writer: | |
| with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f: | |
| example_id = 0 | |
| for line in f: | |
| if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
| writer.write(line) | |
| if not preds_list[example_id]: | |
| example_id += 1 | |
| elif preds_list[example_id]: | |
| output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n" | |
| writer.write(output_line) | |
| else: | |
| logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0]) | |
| return results | |
| if __name__ == "__main__": | |
| main() | |