Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Fine-tuning the library models for translation. | |
| """ | |
| # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. | |
| import json | |
| import logging | |
| import os | |
| import sys | |
| import warnings | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| import datasets | |
| import evaluate | |
| import numpy as np | |
| import tensorflow as tf | |
| from datasets import load_dataset | |
| import transformers | |
| from transformers import ( | |
| AutoConfig, | |
| AutoTokenizer, | |
| DataCollatorForSeq2Seq, | |
| HfArgumentParser, | |
| KerasMetricCallback, | |
| M2M100Tokenizer, | |
| MBart50Tokenizer, | |
| MBart50TokenizerFast, | |
| MBartTokenizer, | |
| MBartTokenizerFast, | |
| PushToHubCallback, | |
| TFAutoModelForSeq2SeqLM, | |
| TFTrainingArguments, | |
| create_optimizer, | |
| set_seed, | |
| ) | |
| from transformers.trainer_utils import get_last_checkpoint | |
| from transformers.utils import check_min_version, send_example_telemetry | |
| from transformers.utils.versions import require_version | |
| # region Dependencies and constants | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
| check_min_version("4.34.0.dev0") | |
| require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt") | |
| logger = logging.getLogger(__name__) | |
| MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer] | |
| # endregion | |
| # region Arguments | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| use_fast_tokenizer: bool = field( | |
| default=True, | |
| metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
| ) | |
| model_revision: str = field( | |
| default="main", | |
| metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
| ) | |
| token: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
| "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
| ) | |
| }, | |
| ) | |
| use_auth_token: bool = field( | |
| default=None, | |
| metadata={ | |
| "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." | |
| }, | |
| ) | |
| trust_remote_code: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" | |
| "should only be set to `True` for repositories you trust and in which you have read the code, as it will" | |
| "execute code present on the Hub on your local machine." | |
| ) | |
| }, | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| source_lang: str = field(default=None, metadata={"help": "Source language id for translation."}) | |
| target_lang: str = field(default=None, metadata={"help": "Target language id for translation."}) | |
| dataset_name: Optional[str] = field( | |
| default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| train_file: Optional[str] = field( | |
| default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."} | |
| ) | |
| validation_file: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." | |
| ) | |
| }, | |
| ) | |
| test_file: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." | |
| }, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| max_source_length: Optional[int] = field( | |
| default=1024, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| max_target_length: Optional[int] = field( | |
| default=128, | |
| metadata={ | |
| "help": ( | |
| "The maximum total sequence length for target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| val_max_target_length: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The maximum total sequence length for validation target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." | |
| "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " | |
| "during ``evaluate`` and ``predict``." | |
| ) | |
| }, | |
| ) | |
| pad_to_max_length: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether to pad all samples to model maximum sentence length. " | |
| "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " | |
| "efficient on GPU but very bad for TPU." | |
| ) | |
| }, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_predict_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| num_beams: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " | |
| "which is used during ``evaluate`` and ``predict``." | |
| ) | |
| }, | |
| ) | |
| ignore_pad_token_for_loss: bool = field( | |
| default=True, | |
| metadata={ | |
| "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." | |
| }, | |
| ) | |
| source_prefix: Optional[str] = field( | |
| default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} | |
| ) | |
| forced_bos_token: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for" | |
| " multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to" | |
| " be the target language token.(Usually it is the target language token)" | |
| ) | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if self.dataset_name is None and self.train_file is None and self.validation_file is None: | |
| raise ValueError("Need either a dataset name or a training/validation file.") | |
| else: | |
| if self.train_file is not None: | |
| extension = self.train_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
| if self.validation_file is not None: | |
| extension = self.validation_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
| if self.val_max_target_length is None: | |
| self.val_max_target_length = self.max_target_length | |
| # endregion | |
| def main(): | |
| # region Argument parsing | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| if model_args.use_auth_token is not None: | |
| warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) | |
| if model_args.token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| model_args.token = model_args.use_auth_token | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_translation", model_args, data_args, framework="tensorflow") | |
| # endregion | |
| # region Logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| logger.setLevel(logging.INFO) | |
| datasets.utils.logging.set_verbosity(logging.INFO) | |
| transformers.utils.logging.set_verbosity(logging.INFO) | |
| # Log on each process the small summary: | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # endregion | |
| # region Detecting last checkpoint | |
| last_checkpoint = None | |
| if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
| last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
| if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
| "Use --overwrite_output_dir to overcome." | |
| ) | |
| elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | |
| logger.info( | |
| f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
| "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
| ) | |
| # endregion | |
| # Set seed before initializing model. | |
| set_seed(training_args.seed) | |
| # region Load datasets | |
| # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) | |
| # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
| # (the dataset will be downloaded automatically from the datasets Hub). | |
| # | |
| # For CSV/JSON files this script will use the first column for the full texts and the second column for the | |
| # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments). | |
| # | |
| # In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
| # download the dataset. | |
| if data_args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| raw_datasets = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| else: | |
| data_files = {} | |
| if data_args.train_file is not None: | |
| data_files["train"] = data_args.train_file | |
| extension = data_args.train_file.split(".")[-1] | |
| if data_args.validation_file is not None: | |
| data_files["validation"] = data_args.validation_file | |
| extension = data_args.validation_file.split(".")[-1] | |
| raw_datasets = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
| # https://huggingface.co/docs/datasets/loading | |
| # endregion | |
| # region Load model config and tokenizer | |
| # | |
| # Distributed training: | |
| # The .from_pretrained methods guarantee that only one local process can concurrently | |
| # download model & vocab. | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=model_args.use_fast_tokenizer, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| prefix = data_args.source_prefix if data_args.source_prefix is not None else "" | |
| # endregion | |
| # region Dataset preprocessing | |
| # We need to tokenize inputs and targets. | |
| if training_args.do_train: | |
| column_names = raw_datasets["train"].column_names | |
| elif training_args.do_eval: | |
| column_names = raw_datasets["validation"].column_names | |
| else: | |
| logger.info("There is nothing to do. Please pass `do_train`, and/or `do_eval`.") | |
| return | |
| column_names = raw_datasets["train"].column_names | |
| # For translation we set the codes of our source and target languages (only useful for mBART, the others will | |
| # ignore those attributes). | |
| if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)): | |
| assert data_args.target_lang is not None and data_args.source_lang is not None, ( | |
| f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and " | |
| "--target_lang arguments." | |
| ) | |
| tokenizer.src_lang = data_args.source_lang | |
| tokenizer.tgt_lang = data_args.target_lang | |
| forced_bos_token_id = ( | |
| tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None | |
| ) | |
| # Get the language codes for input/target. | |
| source_lang = data_args.source_lang.split("_")[0] | |
| target_lang = data_args.target_lang.split("_")[0] | |
| padding = "max_length" if data_args.pad_to_max_length else False | |
| # Temporarily set max_target_length for training. | |
| max_target_length = data_args.max_target_length | |
| padding = "max_length" if data_args.pad_to_max_length else False | |
| def preprocess_function(examples): | |
| inputs = [ex[source_lang] for ex in examples["translation"]] | |
| targets = [ex[target_lang] for ex in examples["translation"]] | |
| inputs = [prefix + inp for inp in inputs] | |
| model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True) | |
| # Tokenize targets with the `text_target` keyword argument | |
| labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True) | |
| # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore | |
| # padding in the loss. | |
| if padding == "max_length" and data_args.ignore_pad_token_for_loss: | |
| labels["input_ids"] = [ | |
| [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] | |
| ] | |
| model_inputs["labels"] = labels["input_ids"] | |
| return model_inputs | |
| if training_args.do_train: | |
| if "train" not in raw_datasets: | |
| raise ValueError("--do_train requires a train dataset") | |
| train_dataset = raw_datasets["train"] | |
| if data_args.max_train_samples is not None: | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| with training_args.main_process_first(desc="train dataset map pre-processing"): | |
| train_dataset = train_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on train dataset", | |
| ) | |
| else: | |
| train_dataset = None | |
| if training_args.do_eval: | |
| max_target_length = data_args.val_max_target_length | |
| if "validation" not in raw_datasets: | |
| raise ValueError("--do_eval requires a validation dataset") | |
| eval_dataset = raw_datasets["validation"] | |
| if data_args.max_eval_samples is not None: | |
| max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
| eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
| with training_args.main_process_first(desc="validation dataset map pre-processing"): | |
| eval_dataset = eval_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on validation dataset", | |
| ) | |
| else: | |
| eval_dataset = None | |
| # endregion | |
| with training_args.strategy.scope(): | |
| # region Prepare model | |
| model = TFAutoModelForSeq2SeqLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| config=config, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch | |
| # on a small vocab and want a smaller embedding size, remove this test. | |
| embeddings = model.get_input_embeddings() | |
| # Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings. | |
| # As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and | |
| # the weights will always be in embeddings.embeddings. | |
| if hasattr(embeddings, "embeddings"): | |
| embedding_size = embeddings.embeddings.shape[0] | |
| else: | |
| embedding_size = embeddings.weight.shape[0] | |
| if len(tokenizer) > embedding_size: | |
| model.resize_token_embeddings(len(tokenizer)) | |
| if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)): | |
| model.config.forced_bos_token_id = forced_bos_token_id | |
| # endregion | |
| # region Set decoder_start_token_id | |
| if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): | |
| assert ( | |
| data_args.target_lang is not None and data_args.source_lang is not None | |
| ), "mBart requires --target_lang and --source_lang" | |
| if isinstance(tokenizer, MBartTokenizer): | |
| model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang] | |
| else: | |
| model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang) | |
| if model.config.decoder_start_token_id is None: | |
| raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") | |
| # endregion | |
| # region Prepare TF Dataset objects | |
| label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id | |
| data_collator = DataCollatorForSeq2Seq( | |
| tokenizer, | |
| model=model, | |
| label_pad_token_id=label_pad_token_id, | |
| pad_to_multiple_of=64, # Reduce the number of unique shapes for XLA, especially for generation | |
| return_tensors="np", | |
| ) | |
| num_replicas = training_args.strategy.num_replicas_in_sync | |
| total_train_batch_size = training_args.per_device_train_batch_size * num_replicas | |
| total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas | |
| dataset_options = tf.data.Options() | |
| dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF | |
| # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in | |
| # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also | |
| # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names | |
| # yourself if you use this method, whereas they are automatically inferred from the model input names when | |
| # using model.prepare_tf_dataset() | |
| # For more info see the docs: | |
| # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset | |
| # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset | |
| tf_train_dataset = model.prepare_tf_dataset( | |
| train_dataset, | |
| collate_fn=data_collator, | |
| batch_size=total_train_batch_size, | |
| shuffle=True, | |
| ).with_options(dataset_options) | |
| tf_eval_dataset = model.prepare_tf_dataset( | |
| eval_dataset, collate_fn=data_collator, batch_size=total_eval_batch_size, shuffle=False | |
| ).with_options(dataset_options) | |
| # endregion | |
| # region Optimizer and LR scheduling | |
| num_train_steps = int(len(tf_train_dataset) * training_args.num_train_epochs) | |
| if training_args.warmup_steps > 0: | |
| num_warmup_steps = training_args.warmup_steps | |
| elif training_args.warmup_ratio > 0: | |
| num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) | |
| else: | |
| num_warmup_steps = 0 | |
| if training_args.do_train: | |
| optimizer, lr_schedule = create_optimizer( | |
| init_lr=training_args.learning_rate, | |
| num_train_steps=num_train_steps, | |
| num_warmup_steps=num_warmup_steps, | |
| adam_beta1=training_args.adam_beta1, | |
| adam_beta2=training_args.adam_beta2, | |
| adam_epsilon=training_args.adam_epsilon, | |
| weight_decay_rate=training_args.weight_decay, | |
| adam_global_clipnorm=training_args.max_grad_norm, | |
| ) | |
| else: | |
| optimizer = None | |
| # endregion | |
| # region Metric and postprocessing | |
| if training_args.do_eval: | |
| metric = evaluate.load("sacrebleu") | |
| if data_args.val_max_target_length is None: | |
| data_args.val_max_target_length = data_args.max_target_length | |
| gen_kwargs = { | |
| "max_length": data_args.val_max_target_length, | |
| "num_beams": data_args.num_beams, | |
| "no_repeat_ngram_size": 0, # Not supported under XLA right now, and some models set it by default | |
| } | |
| def postprocess_text(preds, labels): | |
| preds = [pred.strip() for pred in preds] | |
| labels = [[label.strip()] for label in labels] | |
| return preds, labels | |
| def compute_metrics(preds): | |
| predictions, labels = preds | |
| if isinstance(predictions, tuple): | |
| predictions = predictions[0] | |
| decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True) | |
| labels = np.where(labels != -100, labels, tokenizer.pad_token_id) | |
| decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
| decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) | |
| metrics = metric.compute(predictions=decoded_preds, references=decoded_labels) | |
| return {"bleu": metrics["score"]} | |
| # The KerasMetricCallback allows metrics that are too complex to write as standard Keras metrics | |
| # to be computed each epoch. Any Python code can be included in the metric_fn. This is especially | |
| # useful for metrics like BLEU and ROUGE that perform string comparisons on decoded model outputs. | |
| # For more information, see the docs at | |
| # https://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.KerasMetricCallback | |
| metric_callback = KerasMetricCallback( | |
| metric_fn=compute_metrics, | |
| eval_dataset=tf_eval_dataset, | |
| predict_with_generate=True, | |
| use_xla_generation=True, | |
| generate_kwargs=gen_kwargs, | |
| ) | |
| callbacks = [metric_callback] | |
| else: | |
| callbacks = [] | |
| # endregion | |
| # region Preparing push_to_hub and model card | |
| push_to_hub_model_id = training_args.push_to_hub_model_id | |
| model_name = model_args.model_name_or_path.split("/")[-1] | |
| if not push_to_hub_model_id: | |
| push_to_hub_model_id = f"{model_name}-finetuned-{data_args.source_lang}-{data_args.target_lang}" | |
| model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"} | |
| if data_args.dataset_name is not None: | |
| model_card_kwargs["dataset_tags"] = data_args.dataset_name | |
| if data_args.dataset_config_name is not None: | |
| model_card_kwargs["dataset_args"] = data_args.dataset_config_name | |
| model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" | |
| else: | |
| model_card_kwargs["dataset"] = data_args.dataset_name | |
| languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None] | |
| if len(languages) > 0: | |
| model_card_kwargs["language"] = languages | |
| if training_args.push_to_hub: | |
| # Because this training can be quite long, we save once per epoch. | |
| callbacks.append( | |
| PushToHubCallback( | |
| output_dir=training_args.output_dir, | |
| hub_model_id=push_to_hub_model_id, | |
| hub_token=training_args.push_to_hub_token, | |
| tokenizer=tokenizer, | |
| **model_card_kwargs, | |
| ) | |
| ) | |
| # endregion | |
| # region Training | |
| eval_metrics = None | |
| # Transformers models compute the right loss for their task by default when labels are passed, and will | |
| # use this for training unless you specify your own loss function in compile(). | |
| model.compile(optimizer=optimizer, jit_compile=training_args.xla) | |
| if training_args.do_train: | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num Epochs = {training_args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") | |
| logger.info(f" Total train batch size = {total_train_batch_size}") | |
| logger.info(f" Total optimization steps = {num_train_steps}") | |
| if training_args.xla and not data_args.pad_to_max_length: | |
| logger.warning( | |
| "XLA training may be slow at first when --pad_to_max_length is not set " | |
| "until all possible shapes have been compiled." | |
| ) | |
| history = model.fit(tf_train_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks) | |
| eval_metrics = {key: val[-1] for key, val in history.history.items()} | |
| # endregion | |
| # region Validation | |
| if training_args.do_eval and not training_args.do_train: | |
| # Compiling generation with XLA yields enormous speedups, see https://huggingface.co/blog/tf-xla-generate | |
| def generate(**kwargs): | |
| return model.generate(**kwargs) | |
| if training_args.do_eval: | |
| logger.info("Evaluation...") | |
| for batch, labels in tf_eval_dataset: | |
| batch.update(gen_kwargs) | |
| generated_tokens = generate(**batch) | |
| if isinstance(generated_tokens, tuple): | |
| generated_tokens = generated_tokens[0] | |
| decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) | |
| labels = np.where(labels != -100, labels, tokenizer.pad_token_id) | |
| decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
| decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) | |
| metric.add_batch(predictions=decoded_preds, references=decoded_labels) | |
| eval_metrics = metric.compute() | |
| logger.info({"bleu": eval_metrics["score"]}) | |
| # endregion | |
| if training_args.output_dir is not None and eval_metrics is not None: | |
| output_eval_file = os.path.join(training_args.output_dir, "all_results.json") | |
| with open(output_eval_file, "w") as writer: | |
| writer.write(json.dumps(eval_metrics)) | |
| if training_args.output_dir is not None and not training_args.push_to_hub: | |
| # If we're not pushing to hub, at least save a local copy when we're done | |
| model.save_pretrained(training_args.output_dir) | |
| if __name__ == "__main__": | |
| main() | |