Spaces:
Paused
Paused
| import os | |
| from trainer import Trainer, TrainerArgs | |
| from TTS.tts.configs.shared_configs import BaseDatasetConfig | |
| from TTS.tts.configs.vits_config import VitsConfig | |
| from TTS.tts.datasets import load_tts_samples | |
| from TTS.tts.models.vits import Vits, VitsAudioConfig | |
| from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
| from TTS.utils.audio import AudioProcessor | |
| output_path = os.path.dirname(os.path.abspath(__file__)) | |
| dataset_config = BaseDatasetConfig( | |
| formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/") | |
| ) | |
| audio_config = VitsAudioConfig( | |
| sample_rate=22050, win_length=1024, hop_length=256, num_mels=80, mel_fmin=0, mel_fmax=None | |
| ) | |
| config = VitsConfig( | |
| audio=audio_config, | |
| run_name="vits_ljspeech", | |
| batch_size=32, | |
| eval_batch_size=16, | |
| batch_group_size=5, | |
| num_loader_workers=8, | |
| num_eval_loader_workers=4, | |
| run_eval=True, | |
| test_delay_epochs=-1, | |
| epochs=1000, | |
| text_cleaner="english_cleaners", | |
| use_phonemes=True, | |
| phoneme_language="en-us", | |
| phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
| compute_input_seq_cache=True, | |
| print_step=25, | |
| print_eval=True, | |
| mixed_precision=True, | |
| output_path=output_path, | |
| datasets=[dataset_config], | |
| cudnn_benchmark=False, | |
| ) | |
| # INITIALIZE THE AUDIO PROCESSOR | |
| # Audio processor is used for feature extraction and audio I/O. | |
| # It mainly serves to the dataloader and the training loggers. | |
| ap = AudioProcessor.init_from_config(config) | |
| # INITIALIZE THE TOKENIZER | |
| # Tokenizer is used to convert text to sequences of token IDs. | |
| # config is updated with the default characters if not defined in the config. | |
| tokenizer, config = TTSTokenizer.init_from_config(config) | |
| # LOAD DATA SAMPLES | |
| # Each sample is a list of ```[text, audio_file_path, speaker_name]``` | |
| # You can define your custom sample loader returning the list of samples. | |
| # Or define your custom formatter and pass it to the `load_tts_samples`. | |
| # Check `TTS.tts.datasets.load_tts_samples` for more details. | |
| train_samples, eval_samples = load_tts_samples( | |
| dataset_config, | |
| eval_split=True, | |
| eval_split_max_size=config.eval_split_max_size, | |
| eval_split_size=config.eval_split_size, | |
| ) | |
| # init model | |
| model = Vits(config, ap, tokenizer, speaker_manager=None) | |
| # init the trainer and π | |
| trainer = Trainer( | |
| TrainerArgs(), | |
| config, | |
| output_path, | |
| model=model, | |
| train_samples=train_samples, | |
| eval_samples=eval_samples, | |
| ) | |
| trainer.fit() | |