Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch GLPN model. """ | |
| import inspect | |
| import unittest | |
| from transformers import is_torch_available, is_vision_available | |
| from transformers.models.auto import get_values | |
| from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import MODEL_MAPPING, GLPNConfig, GLPNForDepthEstimation, GLPNModel | |
| from transformers.models.glpn.modeling_glpn import GLPN_PRETRAINED_MODEL_ARCHIVE_LIST | |
| if is_vision_available(): | |
| from PIL import Image | |
| from transformers import GLPNImageProcessor | |
| class GLPNConfigTester(ConfigTester): | |
| def create_and_test_config_common_properties(self): | |
| config = self.config_class(**self.inputs_dict) | |
| self.parent.assertTrue(hasattr(config, "hidden_sizes")) | |
| self.parent.assertTrue(hasattr(config, "num_attention_heads")) | |
| self.parent.assertTrue(hasattr(config, "num_encoder_blocks")) | |
| class GLPNModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| image_size=64, | |
| num_channels=3, | |
| num_encoder_blocks=4, | |
| depths=[2, 2, 2, 2], | |
| sr_ratios=[8, 4, 2, 1], | |
| hidden_sizes=[16, 32, 64, 128], | |
| downsampling_rates=[1, 4, 8, 16], | |
| num_attention_heads=[1, 2, 4, 8], | |
| is_training=True, | |
| use_labels=True, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| initializer_range=0.02, | |
| decoder_hidden_size=16, | |
| num_labels=3, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.image_size = image_size | |
| self.num_channels = num_channels | |
| self.num_encoder_blocks = num_encoder_blocks | |
| self.sr_ratios = sr_ratios | |
| self.depths = depths | |
| self.hidden_sizes = hidden_sizes | |
| self.downsampling_rates = downsampling_rates | |
| self.num_attention_heads = num_attention_heads | |
| self.is_training = is_training | |
| self.use_labels = use_labels | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.initializer_range = initializer_range | |
| self.decoder_hidden_size = decoder_hidden_size | |
| self.num_labels = num_labels | |
| self.scope = scope | |
| def prepare_config_and_inputs(self): | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| labels = None | |
| if self.use_labels: | |
| labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) | |
| config = self.get_config() | |
| return config, pixel_values, labels | |
| def get_config(self): | |
| return GLPNConfig( | |
| image_size=self.image_size, | |
| num_channels=self.num_channels, | |
| num_encoder_blocks=self.num_encoder_blocks, | |
| depths=self.depths, | |
| hidden_sizes=self.hidden_sizes, | |
| num_attention_heads=self.num_attention_heads, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| initializer_range=self.initializer_range, | |
| decoder_hidden_size=self.decoder_hidden_size, | |
| ) | |
| def create_and_check_model(self, config, pixel_values, labels): | |
| model = GLPNModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values) | |
| expected_height = expected_width = self.image_size // (self.downsampling_rates[-1] * 2) | |
| self.parent.assertEqual( | |
| result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) | |
| ) | |
| def create_and_check_for_depth_estimation(self, config, pixel_values, labels): | |
| config.num_labels = self.num_labels | |
| model = GLPNForDepthEstimation(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values) | |
| self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) | |
| result = model(pixel_values, labels=labels) | |
| self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, pixel_values, labels = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values} | |
| return config, inputs_dict | |
| class GLPNModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = (GLPNModel, GLPNForDepthEstimation) if is_torch_available() else () | |
| pipeline_model_mapping = ( | |
| {"depth-estimation": GLPNForDepthEstimation, "feature-extraction": GLPNModel} if is_torch_available() else {} | |
| ) | |
| test_head_masking = False | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| def setUp(self): | |
| self.model_tester = GLPNModelTester(self) | |
| self.config_tester = GLPNConfigTester(self, config_class=GLPNConfig) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_for_depth_estimation(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs) | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| pass | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_attention_outputs(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.return_dict = True | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = False | |
| config.return_dict = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs.attentions | |
| expected_num_attentions = sum(self.model_tester.depths) | |
| self.assertEqual(len(attentions), expected_num_attentions) | |
| # check that output_attentions also work using config | |
| del inputs_dict["output_attentions"] | |
| config.output_attentions = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs.attentions | |
| self.assertEqual(len(attentions), expected_num_attentions) | |
| # verify the first attentions (first block, first layer) | |
| expected_seq_len = (self.model_tester.image_size // 4) ** 2 | |
| expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 | |
| self.assertListEqual( | |
| list(attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], | |
| ) | |
| # verify the last attentions (last block, last layer) | |
| expected_seq_len = (self.model_tester.image_size // 32) ** 2 | |
| expected_reduced_seq_len = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 | |
| self.assertListEqual( | |
| list(attentions[-1].shape[-3:]), | |
| [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len], | |
| ) | |
| out_len = len(outputs) | |
| # Check attention is always last and order is fine | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| self.assertEqual(out_len + 1, len(outputs)) | |
| self_attentions = outputs.attentions | |
| self.assertEqual(len(self_attentions), expected_num_attentions) | |
| # verify the first attentions (first block, first layer) | |
| expected_seq_len = (self.model_tester.image_size // 4) ** 2 | |
| expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 | |
| self.assertListEqual( | |
| list(self_attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], | |
| ) | |
| def test_hidden_states_output(self): | |
| def check_hidden_states_output(inputs_dict, config, model_class): | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| hidden_states = outputs.hidden_states | |
| expected_num_layers = self.model_tester.num_encoder_blocks | |
| self.assertEqual(len(hidden_states), expected_num_layers) | |
| # verify the first hidden states (first block) | |
| self.assertListEqual( | |
| list(hidden_states[0].shape[-3:]), | |
| [ | |
| self.model_tester.hidden_sizes[0], | |
| self.model_tester.image_size // 4, | |
| self.model_tester.image_size // 4, | |
| ], | |
| ) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| def test_training(self): | |
| if not self.model_tester.is_training: | |
| return | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.return_dict = True | |
| for model_class in self.all_model_classes: | |
| if model_class in get_values(MODEL_MAPPING): | |
| continue | |
| # TODO: remove the following 3 lines once we have a MODEL_FOR_DEPTH_ESTIMATION_MAPPING | |
| # this can then be incorporated into _prepare_for_class in test_modeling_common.py | |
| if model_class.__name__ == "GLPNForDepthEstimation": | |
| batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape | |
| inputs_dict["labels"] = torch.zeros( | |
| [self.model_tester.batch_size, height, width], device=torch_device | |
| ).long() | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.train() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| loss = model(**inputs).loss | |
| loss.backward() | |
| def test_model_from_pretrained(self): | |
| for model_name in GLPN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = GLPNModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| # We will verify our results on an image of cute cats | |
| def prepare_img(): | |
| image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
| return image | |
| class GLPNModelIntegrationTest(unittest.TestCase): | |
| def test_inference_depth_estimation(self): | |
| image_processor = GLPNImageProcessor.from_pretrained(GLPN_PRETRAINED_MODEL_ARCHIVE_LIST[0]) | |
| model = GLPNForDepthEstimation.from_pretrained(GLPN_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device) | |
| image = prepare_img() | |
| inputs = image_processor(images=image, return_tensors="pt").to(torch_device) | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # verify the predicted depth | |
| expected_shape = torch.Size([1, 480, 640]) | |
| self.assertEqual(outputs.predicted_depth.shape, expected_shape) | |
| expected_slice = torch.tensor( | |
| [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] | |
| ).to(torch_device) | |
| self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4)) | |