Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch Bark model. """ | |
| import copy | |
| import inspect | |
| import tempfile | |
| import unittest | |
| from transformers import ( | |
| BarkCoarseConfig, | |
| BarkConfig, | |
| BarkFineConfig, | |
| BarkSemanticConfig, | |
| is_torch_available, | |
| ) | |
| from transformers.models.bark.generation_configuration_bark import ( | |
| BarkCoarseGenerationConfig, | |
| BarkFineGenerationConfig, | |
| BarkSemanticGenerationConfig, | |
| ) | |
| from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device | |
| from transformers.utils import cached_property | |
| from ...generation.test_utils import GenerationTesterMixin | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
| from ..encodec.test_modeling_encodec import EncodecModelTester | |
| if is_torch_available(): | |
| import torch | |
| from transformers import ( | |
| BarkCausalModel, | |
| BarkCoarseModel, | |
| BarkFineModel, | |
| BarkModel, | |
| BarkProcessor, | |
| BarkSemanticModel, | |
| ) | |
| class BarkSemanticModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=2, | |
| seq_length=4, | |
| is_training=False, # for now training is not supported | |
| use_input_mask=True, | |
| use_labels=True, | |
| vocab_size=33, | |
| output_vocab_size=33, | |
| hidden_size=16, | |
| num_hidden_layers=2, | |
| num_attention_heads=2, | |
| intermediate_size=15, | |
| dropout=0.1, | |
| window_size=256, | |
| initializer_range=0.02, | |
| n_codes_total=8, # for BarkFineModel | |
| n_codes_given=1, # for BarkFineModel | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.output_vocab_size = output_vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.window_size = window_size | |
| self.initializer_range = initializer_range | |
| self.bos_token_id = output_vocab_size - 1 | |
| self.eos_token_id = output_vocab_size - 1 | |
| self.pad_token_id = output_vocab_size - 1 | |
| self.n_codes_total = n_codes_total | |
| self.n_codes_given = n_codes_given | |
| self.is_encoder_decoder = False | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| config = self.get_config() | |
| head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "head_mask": head_mask, | |
| "attention_mask": input_mask, | |
| } | |
| return config, inputs_dict | |
| def get_config(self): | |
| return BarkSemanticConfig( | |
| vocab_size=self.vocab_size, | |
| output_vocab_size=self.output_vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_layers=self.num_hidden_layers, | |
| num_heads=self.num_attention_heads, | |
| use_cache=True, | |
| bos_token_id=self.bos_token_id, | |
| eos_token_id=self.eos_token_id, | |
| pad_token_id=self.pad_token_id, | |
| window_size=self.window_size, | |
| ) | |
| def get_pipeline_config(self): | |
| config = self.get_config() | |
| config.vocab_size = 300 | |
| config.output_vocab_size = 300 | |
| return config | |
| def prepare_config_and_inputs_for_common(self): | |
| config, inputs_dict = self.prepare_config_and_inputs() | |
| return config, inputs_dict | |
| def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): | |
| model = BarkSemanticModel(config=config).to(torch_device).eval() | |
| input_ids = inputs_dict["input_ids"] | |
| attention_mask = inputs_dict["attention_mask"] | |
| # first forward pass | |
| outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) | |
| output, past_key_values = outputs.to_tuple() | |
| # create hypothetical multiple next token and extent to next_input_ids | |
| next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
| next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
| # append to next input_ids and | |
| next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
| next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) | |
| output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["logits"] | |
| output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ | |
| "logits" | |
| ] | |
| # select random slice | |
| random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
| output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
| output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
| self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
| # test that outputs are equal for slice | |
| self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
| # test no attention_mask works | |
| outputs = model(input_ids, use_cache=True) | |
| _, past_key_values = outputs.to_tuple() | |
| output_from_no_past = model(next_input_ids)["logits"] | |
| output_from_past = model(next_tokens, past_key_values=past_key_values)["logits"] | |
| random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
| output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
| output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
| # test that outputs are equal for slice | |
| self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
| class BarkCoarseModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=2, | |
| seq_length=4, | |
| is_training=False, # for now training is not supported | |
| use_input_mask=True, | |
| use_labels=True, | |
| vocab_size=33, | |
| output_vocab_size=33, | |
| hidden_size=16, | |
| num_hidden_layers=2, | |
| num_attention_heads=2, | |
| intermediate_size=15, | |
| dropout=0.1, | |
| window_size=256, | |
| initializer_range=0.02, | |
| n_codes_total=8, # for BarkFineModel | |
| n_codes_given=1, # for BarkFineModel | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.output_vocab_size = output_vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.window_size = window_size | |
| self.initializer_range = initializer_range | |
| self.bos_token_id = output_vocab_size - 1 | |
| self.eos_token_id = output_vocab_size - 1 | |
| self.pad_token_id = output_vocab_size - 1 | |
| self.n_codes_total = n_codes_total | |
| self.n_codes_given = n_codes_given | |
| self.is_encoder_decoder = False | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| config = self.get_config() | |
| head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "head_mask": head_mask, | |
| "attention_mask": input_mask, | |
| } | |
| return config, inputs_dict | |
| def get_config(self): | |
| return BarkCoarseConfig( | |
| vocab_size=self.vocab_size, | |
| output_vocab_size=self.output_vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_layers=self.num_hidden_layers, | |
| num_heads=self.num_attention_heads, | |
| use_cache=True, | |
| bos_token_id=self.bos_token_id, | |
| eos_token_id=self.eos_token_id, | |
| pad_token_id=self.pad_token_id, | |
| window_size=self.window_size, | |
| ) | |
| def get_pipeline_config(self): | |
| config = self.get_config() | |
| config.vocab_size = 300 | |
| config.output_vocab_size = 300 | |
| return config | |
| def prepare_config_and_inputs_for_common(self): | |
| config, inputs_dict = self.prepare_config_and_inputs() | |
| return config, inputs_dict | |
| def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): | |
| model = BarkCoarseModel(config=config).to(torch_device).eval() | |
| input_ids = inputs_dict["input_ids"] | |
| attention_mask = inputs_dict["attention_mask"] | |
| # first forward pass | |
| outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) | |
| output, past_key_values = outputs.to_tuple() | |
| # create hypothetical multiple next token and extent to next_input_ids | |
| next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
| next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
| # append to next input_ids and | |
| next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
| next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) | |
| output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["logits"] | |
| output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ | |
| "logits" | |
| ] | |
| # select random slice | |
| random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
| output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
| output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
| self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
| # test that outputs are equal for slice | |
| self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
| # test no attention_mask works | |
| outputs = model(input_ids, use_cache=True) | |
| _, past_key_values = outputs.to_tuple() | |
| output_from_no_past = model(next_input_ids)["logits"] | |
| output_from_past = model(next_tokens, past_key_values=past_key_values)["logits"] | |
| random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
| output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
| output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
| # test that outputs are equal for slice | |
| self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
| class BarkFineModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=2, | |
| seq_length=4, | |
| is_training=False, # for now training is not supported | |
| use_input_mask=True, | |
| use_labels=True, | |
| vocab_size=33, | |
| output_vocab_size=33, | |
| hidden_size=16, | |
| num_hidden_layers=2, | |
| num_attention_heads=2, | |
| intermediate_size=15, | |
| dropout=0.1, | |
| window_size=256, | |
| initializer_range=0.02, | |
| n_codes_total=8, # for BarkFineModel | |
| n_codes_given=1, # for BarkFineModel | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.output_vocab_size = output_vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.window_size = window_size | |
| self.initializer_range = initializer_range | |
| self.bos_token_id = output_vocab_size - 1 | |
| self.eos_token_id = output_vocab_size - 1 | |
| self.pad_token_id = output_vocab_size - 1 | |
| self.n_codes_total = n_codes_total | |
| self.n_codes_given = n_codes_given | |
| self.is_encoder_decoder = False | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length, self.n_codes_total], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| config = self.get_config() | |
| head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
| # randint between self.n_codes_given - 1 and self.n_codes_total - 1 | |
| codebook_idx = ids_tensor((1,), self.n_codes_total - self.n_codes_given).item() + self.n_codes_given | |
| inputs_dict = { | |
| "codebook_idx": codebook_idx, | |
| "input_ids": input_ids, | |
| "head_mask": head_mask, | |
| "attention_mask": input_mask, | |
| } | |
| return config, inputs_dict | |
| def get_config(self): | |
| return BarkFineConfig( | |
| vocab_size=self.vocab_size, | |
| output_vocab_size=self.output_vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_layers=self.num_hidden_layers, | |
| num_heads=self.num_attention_heads, | |
| use_cache=True, | |
| bos_token_id=self.bos_token_id, | |
| eos_token_id=self.eos_token_id, | |
| pad_token_id=self.pad_token_id, | |
| window_size=self.window_size, | |
| ) | |
| def get_pipeline_config(self): | |
| config = self.get_config() | |
| config.vocab_size = 300 | |
| config.output_vocab_size = 300 | |
| return config | |
| def prepare_config_and_inputs_for_common(self): | |
| config, inputs_dict = self.prepare_config_and_inputs() | |
| return config, inputs_dict | |
| def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): | |
| model = BarkFineModel(config=config).to(torch_device).eval() | |
| input_ids = inputs_dict["input_ids"] | |
| attention_mask = inputs_dict["attention_mask"] | |
| # first forward pass | |
| outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) | |
| output, past_key_values = outputs.to_tuple() | |
| # create hypothetical multiple next token and extent to next_input_ids | |
| next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
| next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
| # append to next input_ids and | |
| next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
| next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) | |
| output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["logits"] | |
| output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ | |
| "logits" | |
| ] | |
| # select random slice | |
| random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
| output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
| output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
| self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
| # test that outputs are equal for slice | |
| self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
| # test no attention_mask works | |
| outputs = model(input_ids, use_cache=True) | |
| _, past_key_values = outputs.to_tuple() | |
| output_from_no_past = model(next_input_ids)["logits"] | |
| output_from_past = model(next_tokens, past_key_values=past_key_values)["logits"] | |
| random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
| output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
| output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
| # test that outputs are equal for slice | |
| self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
| class BarkModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| semantic_kwargs=None, | |
| coarse_acoustics_kwargs=None, | |
| fine_acoustics_kwargs=None, | |
| codec_kwargs=None, | |
| is_training=False, # for now training is not supported | |
| ): | |
| if semantic_kwargs is None: | |
| semantic_kwargs = {} | |
| if coarse_acoustics_kwargs is None: | |
| coarse_acoustics_kwargs = {} | |
| if fine_acoustics_kwargs is None: | |
| fine_acoustics_kwargs = {} | |
| if codec_kwargs is None: | |
| codec_kwargs = {} | |
| self.parent = parent | |
| self.semantic_model_tester = BarkSemanticModelTester(parent, **semantic_kwargs) | |
| self.coarse_acoustics_model_tester = BarkCoarseModelTester(parent, **coarse_acoustics_kwargs) | |
| self.fine_acoustics_model_tester = BarkFineModelTester(parent, **fine_acoustics_kwargs) | |
| self.codec_model_tester = EncodecModelTester(parent, **codec_kwargs) | |
| self.is_training = is_training | |
| def prepare_config_and_inputs(self): | |
| # TODO: @Yoach: Preapre `inputs_dict` | |
| inputs_dict = {} | |
| config = self.get_config() | |
| return config, inputs_dict | |
| def get_config(self): | |
| return BarkConfig.from_sub_model_configs( | |
| self.semantic_model_tester.get_config(), | |
| self.coarse_acoustics_model_tester.get_config(), | |
| self.fine_acoustics_model_tester.get_config(), | |
| self.codec_model_tester.get_config(), | |
| ) | |
| def get_pipeline_config(self): | |
| config = self.get_config() | |
| # follow the `get_pipeline_config` of the sub component models | |
| config.semantic_config.vocab_size = 300 | |
| config.coarse_acoustics_config.vocab_size = 300 | |
| config.fine_acoustics_config.vocab_size = 300 | |
| config.semantic_config.output_vocab_size = 300 | |
| config.coarse_acoustics_config.output_vocab_size = 300 | |
| config.fine_acoustics_config.output_vocab_size = 300 | |
| return config | |
| def prepare_config_and_inputs_for_common(self): | |
| # TODO: @Yoach | |
| pass | |
| # return config, inputs_dict | |
| # Need this class in oder to create tiny model for `bark` | |
| # TODO (@Yoach) Implement actual test methods | |
| class BarkModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): | |
| all_model_classes = (BarkModel,) if is_torch_available() else () | |
| def setUp(self): | |
| self.model_tester = BarkModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=BarkConfig, n_embd=37) | |
| class BarkSemanticModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): | |
| all_model_classes = (BarkSemanticModel,) if is_torch_available() else () | |
| all_generative_model_classes = (BarkCausalModel,) if is_torch_available() else () | |
| is_encoder_decoder = False | |
| fx_compatible = False | |
| test_missing_keys = False | |
| test_pruning = False | |
| test_model_parallel = False | |
| # no model_parallel for now | |
| test_resize_embeddings = True | |
| def setUp(self): | |
| self.model_tester = BarkSemanticModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=BarkSemanticConfig, n_embd=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_save_load_strict(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
| self.assertEqual(info["missing_keys"], []) | |
| def test_decoder_model_past_with_large_inputs(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
| def test_inputs_embeds(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
| input_ids = inputs["input_ids"] | |
| del inputs["input_ids"] | |
| wte = model.get_input_embeddings() | |
| inputs["input_embeds"] = wte(input_ids) | |
| with torch.no_grad(): | |
| model(**inputs)[0] | |
| def test_generate_fp16(self): | |
| config, input_dict = self.model_tester.prepare_config_and_inputs() | |
| input_ids = input_dict["input_ids"] | |
| attention_mask = input_ids.ne(1).to(torch_device) | |
| model = self.all_generative_model_classes[0](config).eval().to(torch_device) | |
| if torch_device == "cuda": | |
| model.half() | |
| model.generate(input_ids, attention_mask=attention_mask) | |
| model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) | |
| class BarkCoarseModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): | |
| # Same tester as BarkSemanticModelTest, except for model_class and config_class | |
| all_model_classes = (BarkCoarseModel,) if is_torch_available() else () | |
| all_generative_model_classes = (BarkCausalModel,) if is_torch_available() else () | |
| is_encoder_decoder = False | |
| fx_compatible = False | |
| test_missing_keys = False | |
| test_pruning = False | |
| test_model_parallel = False | |
| # no model_parallel for now | |
| test_resize_embeddings = True | |
| def setUp(self): | |
| self.model_tester = BarkCoarseModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=BarkCoarseConfig, n_embd=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_save_load_strict(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
| self.assertEqual(info["missing_keys"], []) | |
| def test_decoder_model_past_with_large_inputs(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
| def test_inputs_embeds(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
| input_ids = inputs["input_ids"] | |
| del inputs["input_ids"] | |
| wte = model.get_input_embeddings() | |
| inputs["input_embeds"] = wte(input_ids) | |
| with torch.no_grad(): | |
| model(**inputs)[0] | |
| def test_generate_fp16(self): | |
| config, input_dict = self.model_tester.prepare_config_and_inputs() | |
| input_ids = input_dict["input_ids"] | |
| attention_mask = input_ids.ne(1).to(torch_device) | |
| model = self.all_generative_model_classes[0](config).eval().to(torch_device) | |
| if torch_device == "cuda": | |
| model.half() | |
| model.generate(input_ids, attention_mask=attention_mask) | |
| model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) | |
| class BarkFineModelTest(ModelTesterMixin, unittest.TestCase): | |
| all_model_classes = (BarkFineModel,) if is_torch_available() else () | |
| is_encoder_decoder = False | |
| fx_compatible = False | |
| test_missing_keys = False | |
| test_pruning = False | |
| # no model_parallel for now | |
| test_model_parallel = False | |
| # torchscript disabled for now because forward with an int | |
| test_torchscript = False | |
| test_resize_embeddings = True | |
| def setUp(self): | |
| self.model_tester = BarkFineModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=BarkFineConfig, n_embd=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_save_load_strict(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
| self.assertEqual(info["missing_keys"], []) | |
| def test_inputs_embeds(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
| input_ids = inputs["input_ids"] | |
| del inputs["input_ids"] | |
| wte = model.get_input_embeddings()[inputs_dict["codebook_idx"]] | |
| inputs["input_embeds"] = wte(input_ids[:, :, inputs_dict["codebook_idx"]]) | |
| with torch.no_grad(): | |
| model(**inputs)[0] | |
| def test_generate_fp16(self): | |
| config, input_dict = self.model_tester.prepare_config_and_inputs() | |
| input_ids = input_dict["input_ids"] | |
| # take first codebook channel | |
| model = self.all_model_classes[0](config).eval().to(torch_device) | |
| if torch_device == "cuda": | |
| model.half() | |
| # toy generation_configs | |
| semantic_generation_config = BarkSemanticGenerationConfig(semantic_vocab_size=0) | |
| coarse_generation_config = BarkCoarseGenerationConfig(n_coarse_codebooks=config.n_codes_given) | |
| fine_generation_config = BarkFineGenerationConfig( | |
| max_fine_history_length=config.block_size // 2, | |
| max_fine_input_length=config.block_size, | |
| n_fine_codebooks=config.n_codes_total, | |
| ) | |
| codebook_size = config.vocab_size - 1 | |
| model.generate( | |
| input_ids, | |
| history_prompt=None, | |
| temperature=None, | |
| semantic_generation_config=semantic_generation_config, | |
| coarse_generation_config=coarse_generation_config, | |
| fine_generation_config=fine_generation_config, | |
| codebook_size=codebook_size, | |
| ) | |
| model.generate( | |
| input_ids, | |
| history_prompt=None, | |
| temperature=0.7, | |
| semantic_generation_config=semantic_generation_config, | |
| coarse_generation_config=coarse_generation_config, | |
| fine_generation_config=fine_generation_config, | |
| codebook_size=codebook_size, | |
| ) | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["codebook_idx", "input_ids"] | |
| self.assertListEqual(arg_names[:2], expected_arg_names) | |
| def test_model_common_attributes(self): | |
| # one embedding layer per codebook | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| self.assertIsInstance(model.get_input_embeddings()[0], (torch.nn.Embedding)) | |
| model.set_input_embeddings( | |
| torch.nn.ModuleList([torch.nn.Embedding(10, 10) for _ in range(config.n_codes_total)]) | |
| ) | |
| x = model.get_output_embeddings() | |
| self.assertTrue(x is None or isinstance(x[0], torch.nn.Linear)) | |
| def test_resize_tokens_embeddings(self): | |
| # resizing tokens_embeddings of a ModuleList | |
| original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| if not self.test_resize_embeddings: | |
| return | |
| for model_class in self.all_model_classes: | |
| config = copy.deepcopy(original_config) | |
| model = model_class(config) | |
| model.to(torch_device) | |
| if self.model_tester.is_training is False: | |
| model.eval() | |
| model_vocab_size = config.vocab_size | |
| # Retrieve the embeddings and clone theme | |
| model_embed_list = model.resize_token_embeddings(model_vocab_size) | |
| cloned_embeddings_list = [model_embed.weight.clone() for model_embed in model_embed_list] | |
| # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size | |
| model_embed_list = model.resize_token_embeddings(model_vocab_size + 10) | |
| self.assertEqual(model.config.vocab_size, model_vocab_size + 10) | |
| # Check that it actually resizes the embeddings matrix for each codebook | |
| for model_embed, cloned_embeddings in zip(model_embed_list, cloned_embeddings_list): | |
| self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) | |
| # Check that the model can still do a forward pass successfully (every parameter should be resized) | |
| model(**self._prepare_for_class(inputs_dict, model_class)) | |
| # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size | |
| model_embed_list = model.resize_token_embeddings(model_vocab_size - 15) | |
| self.assertEqual(model.config.vocab_size, model_vocab_size - 15) | |
| for model_embed, cloned_embeddings in zip(model_embed_list, cloned_embeddings_list): | |
| self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) | |
| # Check that the model can still do a forward pass successfully (every parameter should be resized) | |
| # Input ids should be clamped to the maximum size of the vocabulary | |
| inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) | |
| model(**self._prepare_for_class(inputs_dict, model_class)) | |
| # Check that adding and removing tokens has not modified the first part of the embedding matrix. | |
| # only check for the first embedding matrix | |
| models_equal = True | |
| for p1, p2 in zip(cloned_embeddings_list[0], model_embed_list[0].weight): | |
| if p1.data.ne(p2.data).sum() > 0: | |
| models_equal = False | |
| self.assertTrue(models_equal) | |
| def test_resize_embeddings_untied(self): | |
| # resizing tokens_embeddings of a ModuleList | |
| original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| if not self.test_resize_embeddings: | |
| return | |
| original_config.tie_word_embeddings = False | |
| for model_class in self.all_model_classes: | |
| config = copy.deepcopy(original_config) | |
| model = model_class(config).to(torch_device) | |
| # if no output embeddings -> leave test | |
| if model.get_output_embeddings() is None: | |
| continue | |
| # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size | |
| model_vocab_size = config.vocab_size | |
| model.resize_token_embeddings(model_vocab_size + 10) | |
| self.assertEqual(model.config.vocab_size, model_vocab_size + 10) | |
| output_embeds_list = model.get_output_embeddings() | |
| for output_embeds in output_embeds_list: | |
| self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) | |
| # Check bias if present | |
| if output_embeds.bias is not None: | |
| self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) | |
| # Check that the model can still do a forward pass successfully (every parameter should be resized) | |
| model(**self._prepare_for_class(inputs_dict, model_class)) | |
| # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size | |
| model.resize_token_embeddings(model_vocab_size - 15) | |
| self.assertEqual(model.config.vocab_size, model_vocab_size - 15) | |
| # Check that it actually resizes the embeddings matrix | |
| output_embeds_list = model.get_output_embeddings() | |
| for output_embeds in output_embeds_list: | |
| self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) | |
| # Check bias if present | |
| if output_embeds.bias is not None: | |
| self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) | |
| # Check that the model can still do a forward pass successfully (every parameter should be resized) | |
| # Input ids should be clamped to the maximum size of the vocabulary | |
| inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) | |
| # Check that the model can still do a forward pass successfully (every parameter should be resized) | |
| model(**self._prepare_for_class(inputs_dict, model_class)) | |
| class BarkModelIntegrationTests(unittest.TestCase): | |
| def model(self): | |
| return BarkModel.from_pretrained("suno/bark").to(torch_device) | |
| def processor(self): | |
| return BarkProcessor.from_pretrained("suno/bark") | |
| def inputs(self): | |
| input_ids = self.processor("In the light of the moon, a little egg lay on a leaf", voice_preset="en_speaker_6") | |
| input_ids = input_ids.to(torch_device) | |
| return input_ids | |
| def semantic_generation_config(self): | |
| semantic_generation_config = BarkSemanticGenerationConfig(**self.model.generation_config.semantic_config) | |
| return semantic_generation_config | |
| def coarse_generation_config(self): | |
| coarse_generation_config = BarkCoarseGenerationConfig(**self.model.generation_config.coarse_acoustics_config) | |
| return coarse_generation_config | |
| def fine_generation_config(self): | |
| fine_generation_config = BarkFineGenerationConfig(**self.model.generation_config.fine_acoustics_config) | |
| return fine_generation_config | |
| def test_generate_semantic(self): | |
| input_ids = self.inputs | |
| # fmt: off | |
| # check first ids | |
| expected_output_ids = [7363, 321, 41, 1461, 6915, 952, 326, 41, 41, 927,] | |
| # fmt: on | |
| # greedy decoding | |
| with torch.no_grad(): | |
| output_ids = self.model.semantic.generate( | |
| **input_ids, | |
| do_sample=False, | |
| temperature=1.0, | |
| semantic_generation_config=self.semantic_generation_config, | |
| ) | |
| self.assertListEqual(output_ids[0, : len(expected_output_ids)].tolist(), expected_output_ids) | |
| def test_generate_coarse(self): | |
| input_ids = self.inputs | |
| history_prompt = input_ids["history_prompt"] | |
| # fmt: off | |
| # check first ids | |
| expected_output_ids = [11018, 11391, 10651, 11418, 10857, 11620, 10642, 11366, 10312, 11528, 10531, 11516, 10474, 11051, 10524, 11051, ] | |
| # fmt: on | |
| with torch.no_grad(): | |
| output_ids = self.model.semantic.generate( | |
| **input_ids, | |
| do_sample=False, | |
| temperature=1.0, | |
| semantic_generation_config=self.semantic_generation_config, | |
| ) | |
| output_ids = self.model.coarse_acoustics.generate( | |
| output_ids, | |
| history_prompt=history_prompt, | |
| do_sample=False, | |
| temperature=1.0, | |
| semantic_generation_config=self.semantic_generation_config, | |
| coarse_generation_config=self.coarse_generation_config, | |
| codebook_size=self.model.generation_config.codebook_size, | |
| ) | |
| self.assertListEqual(output_ids[0, : len(expected_output_ids)].tolist(), expected_output_ids) | |
| def test_generate_fine(self): | |
| input_ids = self.inputs | |
| history_prompt = input_ids["history_prompt"] | |
| # fmt: off | |
| expected_output_ids = [ | |
| [1018, 651, 857, 642, 312, 531, 474, 524, 524, 776,], | |
| [367, 394, 596, 342, 504, 492, 27, 27, 822, 822,], | |
| [961, 955, 221, 955, 955, 686, 939, 939, 479, 176,], | |
| [638, 365, 218, 944, 853, 363, 639, 22, 884, 456,], | |
| [302, 912, 524, 38, 174, 209, 879, 23, 910, 227,], | |
| [440, 673, 861, 666, 372, 558, 49, 172, 232, 342,], | |
| [244, 358, 123, 356, 586, 520, 499, 877, 542, 637,], | |
| [806, 685, 905, 848, 803, 810, 921, 208, 625, 203,], | |
| ] | |
| # fmt: on | |
| with torch.no_grad(): | |
| output_ids = self.model.semantic.generate( | |
| **input_ids, | |
| do_sample=False, | |
| temperature=1.0, | |
| semantic_generation_config=self.semantic_generation_config, | |
| ) | |
| output_ids = self.model.coarse_acoustics.generate( | |
| output_ids, | |
| history_prompt=history_prompt, | |
| do_sample=False, | |
| temperature=1.0, | |
| semantic_generation_config=self.semantic_generation_config, | |
| coarse_generation_config=self.coarse_generation_config, | |
| codebook_size=self.model.generation_config.codebook_size, | |
| ) | |
| # greedy decoding | |
| output_ids = self.model.fine_acoustics.generate( | |
| output_ids, | |
| history_prompt=history_prompt, | |
| temperature=None, | |
| semantic_generation_config=self.semantic_generation_config, | |
| coarse_generation_config=self.coarse_generation_config, | |
| fine_generation_config=self.fine_generation_config, | |
| codebook_size=self.model.generation_config.codebook_size, | |
| ) | |
| self.assertListEqual(output_ids[0, :, : len(expected_output_ids[0])].tolist(), expected_output_ids) | |
| def test_generate_end_to_end(self): | |
| input_ids = self.inputs | |
| with torch.no_grad(): | |
| self.model.generate(**input_ids) | |
| self.model.generate(**{key: val for (key, val) in input_ids.items() if key != "history_prompt"}) | |
| def test_generate_end_to_end_with_args(self): | |
| input_ids = self.inputs | |
| with torch.no_grad(): | |
| self.model.generate(**input_ids, do_sample=True, temperature=0.6, penalty_alpha=0.6) | |
| self.model.generate(**input_ids, do_sample=True, temperature=0.6, num_beams=4) | |
| def test_generate_end_to_end_with_sub_models_args(self): | |
| input_ids = self.inputs | |
| with torch.no_grad(): | |
| self.model.generate( | |
| **input_ids, do_sample=False, temperature=1.0, coarse_do_sample=True, coarse_temperature=0.7 | |
| ) | |
| self.model.generate( | |
| **input_ids, | |
| do_sample=False, | |
| temperature=1.0, | |
| coarse_do_sample=True, | |
| coarse_temperature=0.7, | |
| fine_temperature=0.3, | |
| ) | |
| self.model.generate( | |
| **input_ids, | |
| do_sample=True, | |
| temperature=0.6, | |
| penalty_alpha=0.6, | |
| semantic_temperature=0.9, | |
| coarse_temperature=0.2, | |
| fine_temperature=0.1, | |
| ) | |
| def test_generate_end_to_end_with_offload(self): | |
| input_ids = self.inputs | |
| with torch.no_grad(): | |
| # standard generation | |
| output_with_no_offload = self.model.generate(**input_ids, do_sample=False, temperature=1.0) | |
| torch.cuda.empty_cache() | |
| memory_before_offload = torch.cuda.memory_allocated() | |
| model_memory_footprint = self.model.get_memory_footprint() | |
| # activate cpu offload | |
| self.model.enable_cpu_offload() | |
| memory_after_offload = torch.cuda.memory_allocated() | |
| # checks if the model have been offloaded | |
| # CUDA memory usage after offload should be near 0, leaving room to small differences | |
| room_for_difference = 1.1 | |
| self.assertGreater( | |
| (memory_before_offload - model_memory_footprint) * room_for_difference, memory_after_offload | |
| ) | |
| # checks if device is the correct one | |
| self.assertEqual(self.model.device.type, torch_device) | |
| # checks if hooks exist | |
| self.assertTrue(hasattr(self.model.semantic, "_hf_hook")) | |
| # output with cpu offload | |
| output_with_offload = self.model.generate(**input_ids, do_sample=False, temperature=1.0) | |
| # checks if same output | |
| self.assertListEqual(output_with_no_offload.tolist(), output_with_offload.tolist()) | |