Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Team All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Fine-tuning the library models for question answering. | |
| """ | |
| # You can also adapt this script on your own question answering task. Pointers for this are left as comments. | |
| import json | |
| import logging | |
| import os | |
| import sys | |
| import warnings | |
| from dataclasses import dataclass, field | |
| from pathlib import Path | |
| from typing import Optional | |
| import evaluate | |
| import tensorflow as tf | |
| from datasets import load_dataset | |
| from utils_qa import postprocess_qa_predictions | |
| import transformers | |
| from transformers import ( | |
| AutoConfig, | |
| AutoTokenizer, | |
| EvalPrediction, | |
| HfArgumentParser, | |
| PreTrainedTokenizerFast, | |
| PushToHubCallback, | |
| TFAutoModelForQuestionAnswering, | |
| TFTrainingArguments, | |
| create_optimizer, | |
| set_seed, | |
| ) | |
| from transformers.utils import CONFIG_NAME, TF2_WEIGHTS_NAME, check_min_version, send_example_telemetry | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
| check_min_version("4.34.0.dev0") | |
| logger = logging.getLogger(__name__) | |
| # region Arguments | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| model_revision: str = field( | |
| default="main", | |
| metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
| ) | |
| token: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
| "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
| ) | |
| }, | |
| ) | |
| use_auth_token: bool = field( | |
| default=None, | |
| metadata={ | |
| "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." | |
| }, | |
| ) | |
| trust_remote_code: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" | |
| "should only be set to `True` for repositories you trust and in which you have read the code, as it will" | |
| "execute code present on the Hub on your local machine." | |
| ) | |
| }, | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| dataset_name: Optional[str] = field( | |
| default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
| validation_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
| ) | |
| test_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."}, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| max_seq_length: int = field( | |
| default=384, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| pad_to_max_length: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when" | |
| " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)." | |
| ) | |
| }, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_predict_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| version_2_with_negative: bool = field( | |
| default=False, metadata={"help": "If true, some of the examples do not have an answer."} | |
| ) | |
| null_score_diff_threshold: float = field( | |
| default=0.0, | |
| metadata={ | |
| "help": ( | |
| "The threshold used to select the null answer: if the best answer has a score that is less than " | |
| "the score of the null answer minus this threshold, the null answer is selected for this example. " | |
| "Only useful when `version_2_with_negative=True`." | |
| ) | |
| }, | |
| ) | |
| doc_stride: int = field( | |
| default=128, | |
| metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, | |
| ) | |
| n_best_size: int = field( | |
| default=20, | |
| metadata={"help": "The total number of n-best predictions to generate when looking for an answer."}, | |
| ) | |
| max_answer_length: int = field( | |
| default=30, | |
| metadata={ | |
| "help": ( | |
| "The maximum length of an answer that can be generated. This is needed because the start " | |
| "and end predictions are not conditioned on one another." | |
| ) | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if ( | |
| self.dataset_name is None | |
| and self.train_file is None | |
| and self.validation_file is None | |
| and self.test_file is None | |
| ): | |
| raise ValueError("Need either a dataset name or a training/validation file/test_file.") | |
| else: | |
| if self.train_file is not None: | |
| extension = self.train_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
| if self.validation_file is not None: | |
| extension = self.validation_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
| if self.test_file is not None: | |
| extension = self.test_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." | |
| # endregion | |
| # region Helper classes | |
| class SavePretrainedCallback(tf.keras.callbacks.Callback): | |
| # Hugging Face models have a save_pretrained() method that saves both the weights and the necessary | |
| # metadata to allow them to be loaded as a pretrained model in future. This is a simple Keras callback | |
| # that saves the model with this method after each epoch. | |
| def __init__(self, output_dir, **kwargs): | |
| super().__init__() | |
| self.output_dir = output_dir | |
| def on_epoch_end(self, epoch, logs=None): | |
| self.model.save_pretrained(self.output_dir) | |
| # endregion | |
| def main(): | |
| # region Argument parsing | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| if model_args.use_auth_token is not None: | |
| warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) | |
| if model_args.token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| model_args.token = model_args.use_auth_token | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_qa", model_args, data_args, framework="tensorflow") | |
| output_dir = Path(training_args.output_dir) | |
| output_dir.mkdir(parents=True, exist_ok=True) | |
| # endregion | |
| # region Checkpoints | |
| checkpoint = None | |
| if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir: | |
| if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file(): | |
| checkpoint = output_dir | |
| logger.info( | |
| f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this" | |
| " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
| ) | |
| else: | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
| "Use --overwrite_output_dir to continue regardless." | |
| ) | |
| # endregion | |
| # region Logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| logger.setLevel(logging.INFO if training_args.should_log else logging.WARN) | |
| # Set the verbosity to info of the Transformers logger (on main process only): | |
| if training_args.should_log: | |
| transformers.utils.logging.set_verbosity_info() | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # endregion | |
| # Set seed before initializing model. | |
| set_seed(training_args.seed) | |
| # region Load Data | |
| # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
| # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
| # (the dataset will be downloaded automatically from the datasets Hub). | |
| # | |
| # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
| # 'text' is found. You can easily tweak this behavior (see below). | |
| # | |
| # In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
| # download the dataset. | |
| if data_args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| datasets = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| else: | |
| data_files = {} | |
| if data_args.train_file is not None: | |
| data_files["train"] = data_args.train_file | |
| extension = data_args.train_file.split(".")[-1] | |
| if data_args.validation_file is not None: | |
| data_files["validation"] = data_args.validation_file | |
| extension = data_args.validation_file.split(".")[-1] | |
| if data_args.test_file is not None: | |
| data_files["test"] = data_args.test_file | |
| extension = data_args.test_file.split(".")[-1] | |
| datasets = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| field="data", | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
| # https://huggingface.co/docs/datasets/loading_datasets.html. | |
| # endregion | |
| # region Load pretrained model and tokenizer | |
| # | |
| # Distributed training: | |
| # The .from_pretrained methods guarantee that only one local process can concurrently | |
| # download model & vocab. | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=True, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| # endregion | |
| # region Tokenizer check: this script requires a fast tokenizer. | |
| if not isinstance(tokenizer, PreTrainedTokenizerFast): | |
| raise ValueError( | |
| "This example script only works for models that have a fast tokenizer. Checkout the big table of models at" | |
| " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet" | |
| " this requirement" | |
| ) | |
| # endregion | |
| # region Preprocessing the datasets | |
| # Preprocessing is slightly different for training and evaluation. | |
| if training_args.do_train: | |
| column_names = datasets["train"].column_names | |
| elif training_args.do_eval: | |
| column_names = datasets["validation"].column_names | |
| else: | |
| column_names = datasets["test"].column_names | |
| question_column_name = "question" if "question" in column_names else column_names[0] | |
| context_column_name = "context" if "context" in column_names else column_names[1] | |
| answer_column_name = "answers" if "answers" in column_names else column_names[2] | |
| # Padding side determines if we do (question|context) or (context|question). | |
| pad_on_right = tokenizer.padding_side == "right" | |
| if data_args.max_seq_length > tokenizer.model_max_length: | |
| logger.warning( | |
| f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" | |
| f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
| ) | |
| max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
| if data_args.pad_to_max_length or isinstance(training_args.strategy, tf.distribute.TPUStrategy): | |
| logger.info("Padding all batches to max length because argument was set or we're on TPU.") | |
| padding = "max_length" | |
| else: | |
| padding = False | |
| # Training preprocessing | |
| def prepare_train_features(examples): | |
| # Some of the questions have lots of whitespace on the left, which is not useful and will make the | |
| # truncation of the context fail (the tokenized question will take a lots of space). So we remove that | |
| # left whitespace | |
| examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] | |
| # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results | |
| # in one example possible giving several features when a context is long, each of those features having a | |
| # context that overlaps a bit the context of the previous feature. | |
| tokenized_examples = tokenizer( | |
| examples[question_column_name if pad_on_right else context_column_name], | |
| examples[context_column_name if pad_on_right else question_column_name], | |
| truncation="only_second" if pad_on_right else "only_first", | |
| max_length=max_seq_length, | |
| stride=data_args.doc_stride, | |
| return_overflowing_tokens=True, | |
| return_offsets_mapping=True, | |
| padding=padding, | |
| ) | |
| # Since one example might give us several features if it has a long context, we need a map from a feature to | |
| # its corresponding example. This key gives us just that. | |
| sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") | |
| # The offset mappings will give us a map from token to character position in the original context. This will | |
| # help us compute the start_positions and end_positions. | |
| offset_mapping = tokenized_examples.pop("offset_mapping") | |
| # Let's label those examples! | |
| tokenized_examples["start_positions"] = [] | |
| tokenized_examples["end_positions"] = [] | |
| for i, offsets in enumerate(offset_mapping): | |
| # We will label impossible answers with the index of the CLS token. | |
| input_ids = tokenized_examples["input_ids"][i] | |
| cls_index = input_ids.index(tokenizer.cls_token_id) | |
| # Grab the sequence corresponding to that example (to know what is the context and what is the question). | |
| sequence_ids = tokenized_examples.sequence_ids(i) | |
| # One example can give several spans, this is the index of the example containing this span of text. | |
| sample_index = sample_mapping[i] | |
| answers = examples[answer_column_name][sample_index] | |
| # If no answers are given, set the cls_index as answer. | |
| if len(answers["answer_start"]) == 0: | |
| tokenized_examples["start_positions"].append(cls_index) | |
| tokenized_examples["end_positions"].append(cls_index) | |
| else: | |
| # Start/end character index of the answer in the text. | |
| start_char = answers["answer_start"][0] | |
| end_char = start_char + len(answers["text"][0]) | |
| # Start token index of the current span in the text. | |
| token_start_index = 0 | |
| while sequence_ids[token_start_index] != (1 if pad_on_right else 0): | |
| token_start_index += 1 | |
| # End token index of the current span in the text. | |
| token_end_index = len(input_ids) - 1 | |
| while sequence_ids[token_end_index] != (1 if pad_on_right else 0): | |
| token_end_index -= 1 | |
| # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). | |
| if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): | |
| tokenized_examples["start_positions"].append(cls_index) | |
| tokenized_examples["end_positions"].append(cls_index) | |
| else: | |
| # Otherwise move the token_start_index and token_end_index to the two ends of the answer. | |
| # Note: we could go after the last offset if the answer is the last word (edge case). | |
| while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: | |
| token_start_index += 1 | |
| tokenized_examples["start_positions"].append(token_start_index - 1) | |
| while offsets[token_end_index][1] >= end_char: | |
| token_end_index -= 1 | |
| tokenized_examples["end_positions"].append(token_end_index + 1) | |
| return tokenized_examples | |
| processed_datasets = {} | |
| if training_args.do_train: | |
| if "train" not in datasets: | |
| raise ValueError("--do_train requires a train dataset") | |
| train_dataset = datasets["train"] | |
| if data_args.max_train_samples is not None: | |
| # We will select sample from whole data if agument is specified | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| # Create train feature from dataset | |
| train_dataset = train_dataset.map( | |
| prepare_train_features, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| ) | |
| if data_args.max_train_samples is not None: | |
| # Number of samples might increase during Feature Creation, We select only specified max samples | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| processed_datasets["train"] = train_dataset | |
| # Validation preprocessing | |
| def prepare_validation_features(examples): | |
| # Some of the questions have lots of whitespace on the left, which is not useful and will make the | |
| # truncation of the context fail (the tokenized question will take a lots of space). So we remove that | |
| # left whitespace | |
| examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] | |
| # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results | |
| # in one example possible giving several features when a context is long, each of those features having a | |
| # context that overlaps a bit the context of the previous feature. | |
| tokenized_examples = tokenizer( | |
| examples[question_column_name if pad_on_right else context_column_name], | |
| examples[context_column_name if pad_on_right else question_column_name], | |
| truncation="only_second" if pad_on_right else "only_first", | |
| max_length=max_seq_length, | |
| stride=data_args.doc_stride, | |
| return_overflowing_tokens=True, | |
| return_offsets_mapping=True, | |
| padding=padding, | |
| ) | |
| # Since one example might give us several features if it has a long context, we need a map from a feature to | |
| # its corresponding example. This key gives us just that. | |
| sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") | |
| # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the | |
| # corresponding example_id and we will store the offset mappings. | |
| tokenized_examples["example_id"] = [] | |
| for i in range(len(tokenized_examples["input_ids"])): | |
| # Grab the sequence corresponding to that example (to know what is the context and what is the question). | |
| sequence_ids = tokenized_examples.sequence_ids(i) | |
| context_index = 1 if pad_on_right else 0 | |
| # One example can give several spans, this is the index of the example containing this span of text. | |
| sample_index = sample_mapping[i] | |
| tokenized_examples["example_id"].append(examples["id"][sample_index]) | |
| # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token | |
| # position is part of the context or not. | |
| tokenized_examples["offset_mapping"][i] = [ | |
| (o if sequence_ids[k] == context_index else None) | |
| for k, o in enumerate(tokenized_examples["offset_mapping"][i]) | |
| ] | |
| return tokenized_examples | |
| if training_args.do_eval: | |
| if "validation" not in datasets: | |
| raise ValueError("--do_eval requires a validation dataset") | |
| eval_examples = datasets["validation"] | |
| if data_args.max_eval_samples is not None: | |
| # We will select sample from whole data | |
| max_eval_samples = min(len(eval_examples), data_args.max_eval_samples) | |
| eval_examples = eval_examples.select(range(max_eval_samples)) | |
| # Validation Feature Creation | |
| eval_dataset = eval_examples.map( | |
| prepare_validation_features, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| ) | |
| if data_args.max_eval_samples is not None: | |
| # During Feature creation dataset samples might increase, we will select required samples again | |
| max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
| eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
| processed_datasets["validation"] = eval_dataset | |
| if training_args.do_predict: | |
| if "test" not in datasets: | |
| raise ValueError("--do_predict requires a test dataset") | |
| predict_examples = datasets["test"] | |
| if data_args.max_predict_samples is not None: | |
| # We will select sample from whole data | |
| predict_examples = predict_examples.select(range(data_args.max_predict_samples)) | |
| # Predict Feature Creation | |
| predict_dataset = predict_examples.map( | |
| prepare_validation_features, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| ) | |
| if data_args.max_predict_samples is not None: | |
| # During Feature creation dataset samples might increase, we will select required samples again | |
| max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
| predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
| processed_datasets["test"] = predict_dataset | |
| # endregion | |
| # region Metrics and Post-processing: | |
| def post_processing_function(examples, features, predictions, stage="eval"): | |
| # Post-processing: we match the start logits and end logits to answers in the original context. | |
| predictions = postprocess_qa_predictions( | |
| examples=examples, | |
| features=features, | |
| predictions=predictions, | |
| version_2_with_negative=data_args.version_2_with_negative, | |
| n_best_size=data_args.n_best_size, | |
| max_answer_length=data_args.max_answer_length, | |
| null_score_diff_threshold=data_args.null_score_diff_threshold, | |
| output_dir=training_args.output_dir, | |
| prefix=stage, | |
| ) | |
| # Format the result to the format the metric expects. | |
| if data_args.version_2_with_negative: | |
| formatted_predictions = [ | |
| {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() | |
| ] | |
| else: | |
| formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] | |
| references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] | |
| return EvalPrediction(predictions=formatted_predictions, label_ids=references) | |
| metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad") | |
| def compute_metrics(p: EvalPrediction): | |
| return metric.compute(predictions=p.predictions, references=p.label_ids) | |
| # endregion | |
| with training_args.strategy.scope(): | |
| dataset_options = tf.data.Options() | |
| dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF | |
| num_replicas = training_args.strategy.num_replicas_in_sync | |
| # region Load model and prepare datasets | |
| if checkpoint is None: | |
| model_path = model_args.model_name_or_path | |
| else: | |
| model_path = checkpoint | |
| model = TFAutoModelForQuestionAnswering.from_pretrained( | |
| model_path, | |
| config=config, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| if training_args.do_train: | |
| training_dataset = model.prepare_tf_dataset( | |
| processed_datasets["train"], | |
| shuffle=True, | |
| batch_size=training_args.per_device_train_batch_size * num_replicas, | |
| tokenizer=tokenizer, | |
| ) | |
| training_dataset = training_dataset.with_options(dataset_options) | |
| num_train_steps = len(training_dataset) * training_args.num_train_epochs | |
| if training_args.warmup_steps > 0: | |
| num_warmup_steps = training_args.warmup_steps | |
| elif training_args.warmup_ratio > 0: | |
| num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) | |
| else: | |
| num_warmup_steps = 0 | |
| optimizer, schedule = create_optimizer( | |
| init_lr=training_args.learning_rate, | |
| num_train_steps=len(training_dataset) * training_args.num_train_epochs, | |
| num_warmup_steps=num_warmup_steps, | |
| adam_beta1=training_args.adam_beta1, | |
| adam_beta2=training_args.adam_beta2, | |
| adam_epsilon=training_args.adam_epsilon, | |
| weight_decay_rate=training_args.weight_decay, | |
| adam_global_clipnorm=training_args.max_grad_norm, | |
| ) | |
| # Transformers models compute the right loss for their task by default when labels are passed, and will | |
| # use this for training unless you specify your own loss function in compile(). | |
| model.compile(optimizer=optimizer, jit_compile=training_args.xla, metrics=["accuracy"]) | |
| else: | |
| model.compile(optimizer=None, jit_compile=training_args.xla, metrics=["accuracy"]) | |
| training_dataset = None | |
| if training_args.do_eval: | |
| eval_dataset = model.prepare_tf_dataset( | |
| processed_datasets["validation"], | |
| shuffle=False, | |
| batch_size=training_args.per_device_train_batch_size * num_replicas, | |
| tokenizer=tokenizer, | |
| ) | |
| eval_dataset = eval_dataset.with_options(dataset_options) | |
| else: | |
| eval_dataset = None | |
| if training_args.do_predict: | |
| predict_dataset = model.prepare_tf_dataset( | |
| processed_datasets["test"], | |
| shuffle=False, | |
| batch_size=training_args.per_device_eval_batch_size * num_replicas, | |
| tokenizer=tokenizer, | |
| ) | |
| predict_dataset = predict_dataset.with_options(dataset_options) | |
| else: | |
| predict_dataset = None | |
| # endregion | |
| # region Preparing push_to_hub and model card | |
| push_to_hub_model_id = training_args.push_to_hub_model_id | |
| model_name = model_args.model_name_or_path.split("/")[-1] | |
| if not push_to_hub_model_id: | |
| if data_args.dataset_name is not None: | |
| push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}" | |
| else: | |
| push_to_hub_model_id = f"{model_name}-finetuned-question-answering" | |
| model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"} | |
| if data_args.dataset_name is not None: | |
| model_card_kwargs["dataset_tags"] = data_args.dataset_name | |
| if data_args.dataset_config_name is not None: | |
| model_card_kwargs["dataset_args"] = data_args.dataset_config_name | |
| model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" | |
| else: | |
| model_card_kwargs["dataset"] = data_args.dataset_name | |
| if training_args.push_to_hub: | |
| callbacks = [ | |
| PushToHubCallback( | |
| output_dir=training_args.output_dir, | |
| hub_model_id=push_to_hub_model_id, | |
| hub_token=training_args.push_to_hub_token, | |
| tokenizer=tokenizer, | |
| **model_card_kwargs, | |
| ) | |
| ] | |
| else: | |
| callbacks = [] | |
| # endregion | |
| # region Training and Evaluation | |
| if training_args.do_train: | |
| # Note that the validation and test datasets have been processed in a different way to the | |
| # training datasets in this example, and so they don't have the same label structure. | |
| # As such, we don't pass them directly to Keras, but instead get model predictions to evaluate | |
| # after training. | |
| model.fit(training_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks) | |
| if training_args.do_eval: | |
| logger.info("*** Evaluation ***") | |
| # In this example, we compute advanced metrics at the end of training, but | |
| # if you'd like to compute metrics every epoch that are too complex to be written as | |
| # standard Keras metrics, you can use our KerasMetricCallback. See | |
| # https://huggingface.co/docs/transformers/main/en/main_classes/keras_callbacks | |
| eval_predictions = model.predict(eval_dataset) | |
| if isinstance(eval_predictions.start_logits, tf.RaggedTensor): | |
| # If predictions are RaggedTensor, we densify them. Since they are logits, padding with 0 is a bad idea! | |
| # The reason is that a logit of 0 can often end up as quite a high probability value, sometimes even | |
| # the highest probability in a sample. Instead, we use a large negative value, which ensures that the | |
| # padding positions are correctly masked. | |
| eval_start_logits = eval_predictions.start_logits.to_tensor(default_value=-1000).numpy() | |
| eval_end_logits = eval_predictions.end_logits.to_tensor(default_value=-1000).numpy() | |
| else: | |
| eval_start_logits = eval_predictions.start_logits | |
| eval_end_logits = eval_predictions.end_logits | |
| post_processed_eval = post_processing_function( | |
| datasets["validation"], | |
| processed_datasets["validation"], | |
| (eval_start_logits, eval_end_logits), | |
| ) | |
| metrics = compute_metrics(post_processed_eval) | |
| logging.info("Evaluation metrics:") | |
| for metric, value in metrics.items(): | |
| logging.info(f"{metric}: {value:.3f}") | |
| if training_args.output_dir is not None: | |
| output_eval_file = os.path.join(training_args.output_dir, "all_results.json") | |
| with open(output_eval_file, "w") as writer: | |
| writer.write(json.dumps(metrics)) | |
| # endregion | |
| # region Prediction | |
| if training_args.do_predict: | |
| logger.info("*** Predict ***") | |
| test_predictions = model.predict(predict_dataset) | |
| if isinstance(test_predictions.start_logits, tf.RaggedTensor): | |
| # If predictions are RaggedTensor, we densify them. Since they are logits, padding with 0 is a bad idea! | |
| # The reason is that a logit of 0 can often end up as quite a high probability value, sometimes even | |
| # the highest probability in a sample. Instead, we use a large negative value, which ensures that the | |
| # padding positions are correctly masked. | |
| test_start_logits = test_predictions.start_logits.to_tensor(default_value=-1000).numpy() | |
| test_end_logits = test_predictions.end_logits.to_tensor(default_value=-1000).numpy() | |
| else: | |
| test_start_logits = test_predictions.start_logits | |
| test_end_logits = test_predictions.end_logits | |
| post_processed_test = post_processing_function( | |
| datasets["test"], | |
| processed_datasets["test"], | |
| (test_start_logits, test_end_logits), | |
| ) | |
| metrics = compute_metrics(post_processed_test) | |
| logging.info("Test metrics:") | |
| for metric, value in metrics.items(): | |
| logging.info(f"{metric}: {value:.3f}") | |
| # endregion | |
| if training_args.output_dir is not None and not training_args.push_to_hub: | |
| # If we're not pushing to hub, at least save a local copy when we're done | |
| model.save_pretrained(training_args.output_dir) | |
| if __name__ == "__main__": | |
| main() | |