Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch Transformer XL model evaluation script. | |
| Adapted from https://github.com/kimiyoung/transformer-xl. | |
| In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py | |
| This script with default values evaluates a pretrained Transformer-XL on WikiText 103 | |
| """ | |
| import argparse | |
| import logging | |
| import math | |
| import time | |
| import torch | |
| from transformers import TransfoXLCorpus, TransfoXLLMHeadModel | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO | |
| ) | |
| logger = logging.getLogger(__name__) | |
| def main(): | |
| parser = argparse.ArgumentParser(description="PyTorch Transformer Language Model") | |
| parser.add_argument("--model_name", type=str, default="transfo-xl-wt103", help="pretrained model name") | |
| parser.add_argument( | |
| "--split", type=str, default="test", choices=["all", "valid", "test"], help="which split to evaluate" | |
| ) | |
| parser.add_argument("--batch_size", type=int, default=10, help="batch size") | |
| parser.add_argument("--tgt_len", type=int, default=128, help="number of tokens to predict") | |
| parser.add_argument("--ext_len", type=int, default=0, help="length of the extended context") | |
| parser.add_argument("--mem_len", type=int, default=1600, help="length of the retained previous heads") | |
| parser.add_argument("--clamp_len", type=int, default=1000, help="max positional embedding index") | |
| parser.add_argument("--no_cuda", action="store_true", help="Do not use CUDA even though CUA is available") | |
| parser.add_argument("--work_dir", type=str, required=True, help="path to the work_dir") | |
| parser.add_argument("--no_log", action="store_true", help="do not log the eval result") | |
| parser.add_argument("--same_length", action="store_true", help="set same length attention with masking") | |
| parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") | |
| parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") | |
| args = parser.parse_args() | |
| assert args.ext_len >= 0, "extended context length must be non-negative" | |
| if args.server_ip and args.server_port: | |
| # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
| import ptvsd | |
| print("Waiting for debugger attach") | |
| ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
| ptvsd.wait_for_attach() | |
| device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
| logger.info("device: {}".format(device)) | |
| # Load a pre-processed dataset | |
| # You can also build the corpus yourself using TransfoXLCorpus methods | |
| # The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax | |
| # and tokenizing the dataset | |
| # The pre-processed corpus is a convertion (using the conversion script ) | |
| corpus = TransfoXLCorpus.from_pretrained(args.model_name) | |
| va_iter = corpus.get_iterator("valid", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len) | |
| te_iter = corpus.get_iterator("test", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len) | |
| # Load a pre-trained model | |
| model = TransfoXLLMHeadModel.from_pretrained(args.model_name) | |
| model.to(device) | |
| logger.info( | |
| "Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}".format( | |
| args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len | |
| ) | |
| ) | |
| model.reset_memory_length(args.mem_len) | |
| if args.clamp_len > 0: | |
| model.clamp_len = args.clamp_len | |
| if args.same_length: | |
| model.same_length = True | |
| ############################################################################### | |
| # Evaluation code | |
| ############################################################################### | |
| def evaluate(eval_iter): | |
| # Turn on evaluation mode which disables dropout. | |
| model.eval() | |
| total_len, total_loss = 0, 0.0 | |
| start_time = time.time() | |
| with torch.no_grad(): | |
| mems = None | |
| for idx, (data, target, seq_len) in enumerate(eval_iter): | |
| ret = model(data, lm_labels=target, mems=mems) | |
| loss, _, mems = ret | |
| loss = loss.mean() | |
| total_loss += seq_len * loss.item() | |
| total_len += seq_len | |
| total_time = time.time() - start_time | |
| logger.info("Time : {:.2f}s, {:.2f}ms/segment".format(total_time, 1000 * total_time / (idx + 1))) | |
| return total_loss / total_len | |
| # Run on test data. | |
| if args.split == "all": | |
| test_loss = evaluate(te_iter) | |
| valid_loss = evaluate(va_iter) | |
| elif args.split == "valid": | |
| valid_loss = evaluate(va_iter) | |
| test_loss = None | |
| elif args.split == "test": | |
| test_loss = evaluate(te_iter) | |
| valid_loss = None | |
| def format_log(loss, split): | |
| log_str = "| {0} loss {1:5.2f} | {0} ppl {2:9.3f} ".format(split, loss, math.exp(loss)) | |
| return log_str | |
| log_str = "" | |
| if valid_loss is not None: | |
| log_str += format_log(valid_loss, "valid") | |
| if test_loss is not None: | |
| log_str += format_log(test_loss, "test") | |
| logger.info("=" * 100) | |
| logger.info(log_str) | |
| logger.info("=" * 100) | |
| if __name__ == "__main__": | |
| main() | |