Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch ESM model. """ | |
| import unittest | |
| from transformers import EsmConfig, is_torch_available | |
| from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel | |
| from transformers.models.esm.modeling_esm import ( | |
| ESM_PRETRAINED_MODEL_ARCHIVE_LIST, | |
| EsmEmbeddings, | |
| create_position_ids_from_input_ids, | |
| ) | |
| # copied from tests.test_modeling_roberta | |
| class EsmModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| seq_length=7, | |
| is_training=False, | |
| use_input_mask=True, | |
| use_token_type_ids=False, | |
| use_labels=True, | |
| vocab_size=33, | |
| hidden_size=32, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| num_labels=3, | |
| num_choices=4, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_token_type_ids = use_token_type_ids | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.num_labels = num_labels | |
| self.num_choices = num_choices | |
| self.scope = scope | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| sequence_labels = None | |
| token_labels = None | |
| choice_labels = None | |
| if self.use_labels: | |
| sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
| choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
| config = self.get_config() | |
| return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| def get_config(self): | |
| return EsmConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| pad_token_id=1, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| initializer_range=self.initializer_range, | |
| ) | |
| def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels): | |
| model = EsmModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask) | |
| result = model(input_ids) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_for_masked_lm( | |
| self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = EsmForMaskedLM(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, labels=token_labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
| def create_and_check_for_token_classification( | |
| self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = EsmForTokenClassification(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, labels=token_labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ) = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
| return config, inputs_dict | |
| class EsmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| test_mismatched_shapes = False | |
| all_model_classes = ( | |
| ( | |
| EsmForMaskedLM, | |
| EsmModel, | |
| EsmForSequenceClassification, | |
| EsmForTokenClassification, | |
| ) | |
| if is_torch_available() | |
| else () | |
| ) | |
| all_generative_model_classes = () | |
| pipeline_model_mapping = ( | |
| { | |
| "feature-extraction": EsmModel, | |
| "fill-mask": EsmForMaskedLM, | |
| "text-classification": EsmForSequenceClassification, | |
| "token-classification": EsmForTokenClassification, | |
| "zero-shot": EsmForSequenceClassification, | |
| } | |
| if is_torch_available() | |
| else {} | |
| ) | |
| test_sequence_classification_problem_types = True | |
| model_split_percents = [0.5, 0.8, 0.9] | |
| def setUp(self): | |
| self.model_tester = EsmModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_model_various_embeddings(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| for type in ["absolute", "relative_key", "relative_key_query"]: | |
| config_and_inputs[0].position_embedding_type = type | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_for_masked_lm(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
| def test_for_token_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
| def test_model_from_pretrained(self): | |
| for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = EsmModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_create_position_ids_respects_padding_index(self): | |
| """Ensure that the default position ids only assign a sequential . This is a regression | |
| test for https://github.com/huggingface/transformers/issues/1761 | |
| The position ids should be masked with the embedding object's padding index. Therefore, the | |
| first available non-padding position index is EsmEmbeddings.padding_idx + 1 | |
| """ | |
| config = self.model_tester.prepare_config_and_inputs()[0] | |
| model = EsmEmbeddings(config=config) | |
| input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) | |
| expected_positions = torch.as_tensor( | |
| [ | |
| [ | |
| 0 + model.padding_idx + 1, | |
| 1 + model.padding_idx + 1, | |
| 2 + model.padding_idx + 1, | |
| model.padding_idx, | |
| ] | |
| ] | |
| ) | |
| position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) | |
| self.assertEqual(position_ids.shape, expected_positions.shape) | |
| self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) | |
| def test_create_position_ids_from_inputs_embeds(self): | |
| """Ensure that the default position ids only assign a sequential . This is a regression | |
| test for https://github.com/huggingface/transformers/issues/1761 | |
| The position ids should be masked with the embedding object's padding index. Therefore, the | |
| first available non-padding position index is EsmEmbeddings.padding_idx + 1 | |
| """ | |
| config = self.model_tester.prepare_config_and_inputs()[0] | |
| embeddings = EsmEmbeddings(config=config) | |
| inputs_embeds = torch.empty(2, 4, 30) | |
| expected_single_positions = [ | |
| 0 + embeddings.padding_idx + 1, | |
| 1 + embeddings.padding_idx + 1, | |
| 2 + embeddings.padding_idx + 1, | |
| 3 + embeddings.padding_idx + 1, | |
| ] | |
| expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) | |
| position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) | |
| self.assertEqual(position_ids.shape, expected_positions.shape) | |
| self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) | |
| def test_resize_embeddings_untied(self): | |
| pass | |
| def test_resize_tokens_embeddings(self): | |
| pass | |
| class EsmModelIntegrationTest(TestCasePlus): | |
| def test_inference_masked_lm(self): | |
| with torch.no_grad(): | |
| model = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D") | |
| model.eval() | |
| input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) | |
| output = model(input_ids)[0] | |
| vocab_size = 33 | |
| expected_shape = torch.Size((1, 6, vocab_size)) | |
| self.assertEqual(output.shape, expected_shape) | |
| expected_slice = torch.tensor( | |
| [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] | |
| ) | |
| self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) | |
| def test_inference_no_head(self): | |
| with torch.no_grad(): | |
| model = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D") | |
| model.eval() | |
| input_ids = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) | |
| output = model(input_ids)[0] | |
| # compare the actual values for a slice. | |
| expected_slice = torch.tensor( | |
| [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] | |
| ) | |
| self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) | |