Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch Dinat model. """ | |
| import collections | |
| import inspect | |
| import unittest | |
| from transformers import DinatConfig | |
| from transformers.testing_utils import require_natten, require_torch, require_vision, slow, torch_device | |
| from transformers.utils import cached_property, is_torch_available, is_vision_available | |
| from ...test_backbone_common import BackboneTesterMixin | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from torch import nn | |
| from transformers import DinatBackbone, DinatForImageClassification, DinatModel | |
| from transformers.models.dinat.modeling_dinat import DINAT_PRETRAINED_MODEL_ARCHIVE_LIST | |
| if is_vision_available(): | |
| from PIL import Image | |
| from transformers import AutoImageProcessor | |
| class DinatModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| image_size=64, | |
| patch_size=4, | |
| num_channels=3, | |
| embed_dim=16, | |
| depths=[1, 2, 1], | |
| num_heads=[2, 4, 8], | |
| kernel_size=3, | |
| dilations=[[3], [1, 2], [1]], | |
| mlp_ratio=2.0, | |
| qkv_bias=True, | |
| hidden_dropout_prob=0.0, | |
| attention_probs_dropout_prob=0.0, | |
| drop_path_rate=0.1, | |
| hidden_act="gelu", | |
| patch_norm=True, | |
| initializer_range=0.02, | |
| layer_norm_eps=1e-5, | |
| is_training=True, | |
| scope=None, | |
| use_labels=True, | |
| num_labels=10, | |
| out_features=["stage1", "stage2"], | |
| out_indices=[1, 2], | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.num_channels = num_channels | |
| self.embed_dim = embed_dim | |
| self.depths = depths | |
| self.num_heads = num_heads | |
| self.kernel_size = kernel_size | |
| self.dilations = dilations | |
| self.mlp_ratio = mlp_ratio | |
| self.qkv_bias = qkv_bias | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.drop_path_rate = drop_path_rate | |
| self.hidden_act = hidden_act | |
| self.patch_norm = patch_norm | |
| self.layer_norm_eps = layer_norm_eps | |
| self.initializer_range = initializer_range | |
| self.is_training = is_training | |
| self.scope = scope | |
| self.use_labels = use_labels | |
| self.num_labels = num_labels | |
| self.out_features = out_features | |
| self.out_indices = out_indices | |
| def prepare_config_and_inputs(self): | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| labels = None | |
| if self.use_labels: | |
| labels = ids_tensor([self.batch_size], self.num_labels) | |
| config = self.get_config() | |
| return config, pixel_values, labels | |
| def get_config(self): | |
| return DinatConfig( | |
| num_labels=self.num_labels, | |
| image_size=self.image_size, | |
| patch_size=self.patch_size, | |
| num_channels=self.num_channels, | |
| embed_dim=self.embed_dim, | |
| depths=self.depths, | |
| num_heads=self.num_heads, | |
| kernel_size=self.kernel_size, | |
| dilations=self.dilations, | |
| mlp_ratio=self.mlp_ratio, | |
| qkv_bias=self.qkv_bias, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| drop_path_rate=self.drop_path_rate, | |
| hidden_act=self.hidden_act, | |
| patch_norm=self.patch_norm, | |
| layer_norm_eps=self.layer_norm_eps, | |
| initializer_range=self.initializer_range, | |
| out_features=self.out_features, | |
| out_indices=self.out_indices, | |
| ) | |
| def create_and_check_model(self, config, pixel_values, labels): | |
| model = DinatModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values) | |
| expected_height = expected_width = (config.image_size // config.patch_size) // (2 ** (len(config.depths) - 1)) | |
| expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1)) | |
| self.parent.assertEqual( | |
| result.last_hidden_state.shape, (self.batch_size, expected_height, expected_width, expected_dim) | |
| ) | |
| def create_and_check_for_image_classification(self, config, pixel_values, labels): | |
| model = DinatForImageClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values, labels=labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
| # test greyscale images | |
| config.num_channels = 1 | |
| model = DinatForImageClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) | |
| result = model(pixel_values) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
| def create_and_check_backbone(self, config, pixel_values, labels): | |
| model = DinatBackbone(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values) | |
| # verify hidden states | |
| self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) | |
| self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], 16, 16]) | |
| # verify channels | |
| self.parent.assertEqual(len(model.channels), len(config.out_features)) | |
| # verify backbone works with out_features=None | |
| config.out_features = None | |
| model = DinatBackbone(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values) | |
| # verify feature maps | |
| self.parent.assertEqual(len(result.feature_maps), 1) | |
| self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[-1], 4, 4]) | |
| # verify channels | |
| self.parent.assertEqual(len(model.channels), 1) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, pixel_values, labels = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values} | |
| return config, inputs_dict | |
| class DinatModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = ( | |
| ( | |
| DinatModel, | |
| DinatForImageClassification, | |
| DinatBackbone, | |
| ) | |
| if is_torch_available() | |
| else () | |
| ) | |
| pipeline_model_mapping = ( | |
| {"feature-extraction": DinatModel, "image-classification": DinatForImageClassification} | |
| if is_torch_available() | |
| else {} | |
| ) | |
| fx_compatible = False | |
| test_torchscript = False | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_head_masking = False | |
| def setUp(self): | |
| self.model_tester = DinatModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=DinatConfig, embed_dim=37) | |
| def test_config(self): | |
| self.create_and_test_config_common_properties() | |
| self.config_tester.create_and_test_config_to_json_string() | |
| self.config_tester.create_and_test_config_to_json_file() | |
| self.config_tester.create_and_test_config_from_and_save_pretrained() | |
| self.config_tester.create_and_test_config_with_num_labels() | |
| self.config_tester.check_config_can_be_init_without_params() | |
| self.config_tester.check_config_arguments_init() | |
| def create_and_test_config_common_properties(self): | |
| return | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_for_image_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
| def test_backbone(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_backbone(*config_and_inputs) | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_feed_forward_chunking(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
| x = model.get_output_embeddings() | |
| self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_attention_outputs(self): | |
| self.skipTest("Dinat's attention operation is handled entirely by NATTEN.") | |
| def check_hidden_states_output(self, inputs_dict, config, model_class, image_size): | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| hidden_states = outputs.hidden_states | |
| expected_num_layers = getattr( | |
| self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1 | |
| ) | |
| self.assertEqual(len(hidden_states), expected_num_layers) | |
| # Dinat has a different seq_length | |
| patch_size = ( | |
| config.patch_size | |
| if isinstance(config.patch_size, collections.abc.Iterable) | |
| else (config.patch_size, config.patch_size) | |
| ) | |
| height = image_size[0] // patch_size[0] | |
| width = image_size[1] // patch_size[1] | |
| self.assertListEqual( | |
| list(hidden_states[0].shape[-3:]), | |
| [height, width, self.model_tester.embed_dim], | |
| ) | |
| if model_class.__name__ != "DinatBackbone": | |
| reshaped_hidden_states = outputs.reshaped_hidden_states | |
| self.assertEqual(len(reshaped_hidden_states), expected_num_layers) | |
| batch_size, num_channels, height, width = reshaped_hidden_states[0].shape | |
| reshaped_hidden_states = ( | |
| reshaped_hidden_states[0].view(batch_size, num_channels, height, width).permute(0, 2, 3, 1) | |
| ) | |
| self.assertListEqual( | |
| list(reshaped_hidden_states.shape[-3:]), | |
| [height, width, self.model_tester.embed_dim], | |
| ) | |
| def test_hidden_states_output(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| image_size = ( | |
| self.model_tester.image_size | |
| if isinstance(self.model_tester.image_size, collections.abc.Iterable) | |
| else (self.model_tester.image_size, self.model_tester.image_size) | |
| ) | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| self.check_hidden_states_output(inputs_dict, config, model_class, image_size) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| self.check_hidden_states_output(inputs_dict, config, model_class, image_size) | |
| def test_model_from_pretrained(self): | |
| for model_name in DINAT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = DinatModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_initialization(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| configs_no_init = _config_zero_init(config) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| for name, param in model.named_parameters(): | |
| if "embeddings" not in name and param.requires_grad: | |
| self.assertIn( | |
| ((param.data.mean() * 1e9).round() / 1e9).item(), | |
| [0.0, 1.0], | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| class DinatModelIntegrationTest(unittest.TestCase): | |
| def default_image_processor(self): | |
| return AutoImageProcessor.from_pretrained("shi-labs/dinat-mini-in1k-224") if is_vision_available() else None | |
| def test_inference_image_classification_head(self): | |
| model = DinatForImageClassification.from_pretrained("shi-labs/dinat-mini-in1k-224").to(torch_device) | |
| image_processor = self.default_image_processor | |
| image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
| inputs = image_processor(images=image, return_tensors="pt").to(torch_device) | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # verify the logits | |
| expected_shape = torch.Size((1, 1000)) | |
| self.assertEqual(outputs.logits.shape, expected_shape) | |
| expected_slice = torch.tensor([-0.1545, -0.7667, 0.4642]).to(torch_device) | |
| self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |
| class DinatBackboneTest(unittest.TestCase, BackboneTesterMixin): | |
| all_model_classes = (DinatBackbone,) if is_torch_available() else () | |
| config_class = DinatConfig | |
| def setUp(self): | |
| self.model_tester = DinatModelTester(self) | |