Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch DeiT model. """ | |
| import inspect | |
| import unittest | |
| import warnings | |
| from transformers import DeiTConfig | |
| from transformers.models.auto import get_values | |
| from transformers.testing_utils import ( | |
| require_accelerate, | |
| require_torch, | |
| require_torch_gpu, | |
| require_vision, | |
| slow, | |
| torch_device, | |
| ) | |
| from transformers.utils import cached_property, is_torch_available, is_vision_available | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from torch import nn | |
| from transformers import ( | |
| MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, | |
| MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, | |
| MODEL_MAPPING, | |
| DeiTForImageClassification, | |
| DeiTForImageClassificationWithTeacher, | |
| DeiTForMaskedImageModeling, | |
| DeiTModel, | |
| ) | |
| from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST | |
| if is_vision_available(): | |
| from PIL import Image | |
| from transformers import DeiTImageProcessor | |
| class DeiTModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| image_size=30, | |
| patch_size=2, | |
| num_channels=3, | |
| is_training=True, | |
| use_labels=True, | |
| hidden_size=32, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| type_sequence_label_size=10, | |
| initializer_range=0.02, | |
| num_labels=3, | |
| scope=None, | |
| encoder_stride=2, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.num_channels = num_channels | |
| self.is_training = is_training | |
| self.use_labels = use_labels | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.scope = scope | |
| self.encoder_stride = encoder_stride | |
| # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) | |
| num_patches = (image_size // patch_size) ** 2 | |
| self.seq_length = num_patches + 2 | |
| def prepare_config_and_inputs(self): | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| labels = None | |
| if self.use_labels: | |
| labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| config = self.get_config() | |
| return config, pixel_values, labels | |
| def get_config(self): | |
| return DeiTConfig( | |
| image_size=self.image_size, | |
| patch_size=self.patch_size, | |
| num_channels=self.num_channels, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| is_decoder=False, | |
| initializer_range=self.initializer_range, | |
| encoder_stride=self.encoder_stride, | |
| ) | |
| def create_and_check_model(self, config, pixel_values, labels): | |
| model = DeiTModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels): | |
| model = DeiTForMaskedImageModeling(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values) | |
| self.parent.assertEqual( | |
| result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) | |
| ) | |
| # test greyscale images | |
| config.num_channels = 1 | |
| model = DeiTForMaskedImageModeling(config) | |
| model.to(torch_device) | |
| model.eval() | |
| pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) | |
| result = model(pixel_values) | |
| self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size)) | |
| def create_and_check_for_image_classification(self, config, pixel_values, labels): | |
| config.num_labels = self.type_sequence_label_size | |
| model = DeiTForImageClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values, labels=labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
| # test greyscale images | |
| config.num_channels = 1 | |
| model = DeiTForImageClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) | |
| result = model(pixel_values, labels=labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| pixel_values, | |
| labels, | |
| ) = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values} | |
| return config, inputs_dict | |
| class DeiTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| """ | |
| Here we also overwrite some of the tests of test_modeling_common.py, as DeiT does not use input_ids, inputs_embeds, | |
| attention_mask and seq_length. | |
| """ | |
| all_model_classes = ( | |
| ( | |
| DeiTModel, | |
| DeiTForImageClassification, | |
| DeiTForImageClassificationWithTeacher, | |
| DeiTForMaskedImageModeling, | |
| ) | |
| if is_torch_available() | |
| else () | |
| ) | |
| pipeline_model_mapping = ( | |
| { | |
| "feature-extraction": DeiTModel, | |
| "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), | |
| } | |
| if is_torch_available() | |
| else {} | |
| ) | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_head_masking = False | |
| def setUp(self): | |
| self.model_tester = DeiTModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=DeiTConfig, has_text_modality=False, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
| x = model.get_output_embeddings() | |
| self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_for_masked_image_modeling(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) | |
| def test_for_image_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
| # special case for DeiTForImageClassificationWithTeacher model | |
| def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
| inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
| if return_labels: | |
| if model_class.__name__ == "DeiTForImageClassificationWithTeacher": | |
| del inputs_dict["labels"] | |
| return inputs_dict | |
| def test_training(self): | |
| if not self.model_tester.is_training: | |
| return | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.return_dict = True | |
| for model_class in self.all_model_classes: | |
| # DeiTForImageClassificationWithTeacher supports inference-only | |
| if ( | |
| model_class in get_values(MODEL_MAPPING) | |
| or model_class.__name__ == "DeiTForImageClassificationWithTeacher" | |
| ): | |
| continue | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.train() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| loss = model(**inputs).loss | |
| loss.backward() | |
| def test_training_gradient_checkpointing(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| if not self.model_tester.is_training: | |
| return | |
| config.use_cache = False | |
| config.return_dict = True | |
| for model_class in self.all_model_classes: | |
| if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing: | |
| continue | |
| # DeiTForImageClassificationWithTeacher supports inference-only | |
| if model_class.__name__ == "DeiTForImageClassificationWithTeacher": | |
| continue | |
| model = model_class(config) | |
| model.gradient_checkpointing_enable() | |
| model.to(torch_device) | |
| model.train() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| loss = model(**inputs).loss | |
| loss.backward() | |
| def test_problem_types(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| problem_types = [ | |
| {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, | |
| {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, | |
| {"title": "regression", "num_labels": 1, "dtype": torch.float}, | |
| ] | |
| for model_class in self.all_model_classes: | |
| if ( | |
| model_class | |
| not in [ | |
| *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING), | |
| *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING), | |
| ] | |
| or model_class.__name__ == "DeiTForImageClassificationWithTeacher" | |
| ): | |
| continue | |
| for problem_type in problem_types: | |
| with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): | |
| config.problem_type = problem_type["title"] | |
| config.num_labels = problem_type["num_labels"] | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.train() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| if problem_type["num_labels"] > 1: | |
| inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) | |
| inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) | |
| # This tests that we do not trigger the warning form PyTorch "Using a target size that is different | |
| # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure | |
| # they have the same size." which is a symptom something in wrong for the regression problem. | |
| # See https://github.com/huggingface/transformers/issues/11780 | |
| with warnings.catch_warnings(record=True) as warning_list: | |
| loss = model(**inputs).loss | |
| for w in warning_list: | |
| if "Using a target size that is different to the input size" in str(w.message): | |
| raise ValueError( | |
| f"Something is going wrong in the regression problem: intercepted {w.message}" | |
| ) | |
| loss.backward() | |
| def test_model_from_pretrained(self): | |
| for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = DeiTModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| # We will verify our results on an image of cute cats | |
| def prepare_img(): | |
| image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
| return image | |
| class DeiTModelIntegrationTest(unittest.TestCase): | |
| def default_image_processor(self): | |
| return ( | |
| DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") | |
| if is_vision_available() | |
| else None | |
| ) | |
| def test_inference_image_classification_head(self): | |
| model = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224").to( | |
| torch_device | |
| ) | |
| image_processor = self.default_image_processor | |
| image = prepare_img() | |
| inputs = image_processor(images=image, return_tensors="pt").to(torch_device) | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # verify the logits | |
| expected_shape = torch.Size((1, 1000)) | |
| self.assertEqual(outputs.logits.shape, expected_shape) | |
| expected_slice = torch.tensor([-1.0266, 0.1912, -1.2861]).to(torch_device) | |
| self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |
| def test_inference_fp16(self): | |
| r""" | |
| A small test to make sure that inference work in half precision without any problem. | |
| """ | |
| model = DeiTModel.from_pretrained( | |
| "facebook/deit-base-distilled-patch16-224", torch_dtype=torch.float16, device_map="auto" | |
| ) | |
| image_processor = self.default_image_processor | |
| image = prepare_img() | |
| inputs = image_processor(images=image, return_tensors="pt") | |
| pixel_values = inputs.pixel_values.to(torch_device) | |
| # forward pass to make sure inference works in fp16 | |
| with torch.no_grad(): | |
| _ = model(pixel_values) | |