Spaces:
Paused
Paused
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import tempfile | |
| import unittest | |
| from pathlib import Path | |
| from transformers import AutoConfig, is_torch_available | |
| from transformers.testing_utils import require_torch, torch_device | |
| if is_torch_available(): | |
| from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments | |
| class BenchmarkTest(unittest.TestCase): | |
| def check_results_dict_not_empty(self, results): | |
| for model_result in results.values(): | |
| for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]): | |
| result = model_result["result"][batch_size][sequence_length] | |
| self.assertIsNotNone(result) | |
| def test_inference_no_configs(self): | |
| MODEL_ID = "sshleifer/tiny-gpt2" | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=False, | |
| inference=True, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| multi_process=False, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args) | |
| results = benchmark.run() | |
| self.check_results_dict_not_empty(results.time_inference_result) | |
| self.check_results_dict_not_empty(results.memory_inference_result) | |
| def test_inference_no_configs_only_pretrain(self): | |
| MODEL_ID = "sgugger/tiny-distilbert-classification" | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=False, | |
| inference=True, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| multi_process=False, | |
| only_pretrain_model=True, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args) | |
| results = benchmark.run() | |
| self.check_results_dict_not_empty(results.time_inference_result) | |
| self.check_results_dict_not_empty(results.memory_inference_result) | |
| def test_inference_torchscript(self): | |
| MODEL_ID = "sshleifer/tiny-gpt2" | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=False, | |
| inference=True, | |
| torchscript=True, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| multi_process=False, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args) | |
| results = benchmark.run() | |
| self.check_results_dict_not_empty(results.time_inference_result) | |
| self.check_results_dict_not_empty(results.memory_inference_result) | |
| def test_inference_fp16(self): | |
| MODEL_ID = "sshleifer/tiny-gpt2" | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=False, | |
| inference=True, | |
| fp16=True, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| multi_process=False, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args) | |
| results = benchmark.run() | |
| self.check_results_dict_not_empty(results.time_inference_result) | |
| self.check_results_dict_not_empty(results.memory_inference_result) | |
| def test_inference_no_model_no_architectures(self): | |
| MODEL_ID = "sshleifer/tiny-gpt2" | |
| config = AutoConfig.from_pretrained(MODEL_ID) | |
| # set architectures equal to `None` | |
| config.architectures = None | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=True, | |
| inference=True, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| multi_process=False, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) | |
| results = benchmark.run() | |
| self.check_results_dict_not_empty(results.time_inference_result) | |
| self.check_results_dict_not_empty(results.memory_inference_result) | |
| def test_train_no_configs(self): | |
| MODEL_ID = "sshleifer/tiny-gpt2" | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=True, | |
| inference=False, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| multi_process=False, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args) | |
| results = benchmark.run() | |
| self.check_results_dict_not_empty(results.time_train_result) | |
| self.check_results_dict_not_empty(results.memory_train_result) | |
| def test_train_no_configs_fp16(self): | |
| MODEL_ID = "sshleifer/tiny-gpt2" | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=True, | |
| inference=False, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| fp16=True, | |
| multi_process=False, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args) | |
| results = benchmark.run() | |
| self.check_results_dict_not_empty(results.time_train_result) | |
| self.check_results_dict_not_empty(results.memory_train_result) | |
| def test_inference_with_configs(self): | |
| MODEL_ID = "sshleifer/tiny-gpt2" | |
| config = AutoConfig.from_pretrained(MODEL_ID) | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=False, | |
| inference=True, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| multi_process=False, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) | |
| results = benchmark.run() | |
| self.check_results_dict_not_empty(results.time_inference_result) | |
| self.check_results_dict_not_empty(results.memory_inference_result) | |
| def test_inference_encoder_decoder_with_configs(self): | |
| MODEL_ID = "sshleifer/tinier_bart" | |
| config = AutoConfig.from_pretrained(MODEL_ID) | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=False, | |
| inference=True, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| multi_process=False, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) | |
| results = benchmark.run() | |
| self.check_results_dict_not_empty(results.time_inference_result) | |
| self.check_results_dict_not_empty(results.memory_inference_result) | |
| def test_train_with_configs(self): | |
| MODEL_ID = "sshleifer/tiny-gpt2" | |
| config = AutoConfig.from_pretrained(MODEL_ID) | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=True, | |
| inference=False, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| multi_process=False, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) | |
| results = benchmark.run() | |
| self.check_results_dict_not_empty(results.time_train_result) | |
| self.check_results_dict_not_empty(results.memory_train_result) | |
| def test_train_encoder_decoder_with_configs(self): | |
| MODEL_ID = "sshleifer/tinier_bart" | |
| config = AutoConfig.from_pretrained(MODEL_ID) | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=True, | |
| inference=True, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| multi_process=False, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) | |
| results = benchmark.run() | |
| self.check_results_dict_not_empty(results.time_train_result) | |
| self.check_results_dict_not_empty(results.memory_train_result) | |
| def test_save_csv_files(self): | |
| MODEL_ID = "sshleifer/tiny-gpt2" | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=True, | |
| inference=True, | |
| save_to_csv=True, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"), | |
| train_memory_csv_file=os.path.join(tmp_dir, "train_mem.csv"), | |
| inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"), | |
| train_time_csv_file=os.path.join(tmp_dir, "train_time.csv"), | |
| env_info_csv_file=os.path.join(tmp_dir, "env.csv"), | |
| multi_process=False, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args) | |
| benchmark.run() | |
| self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists()) | |
| self.assertTrue(Path(os.path.join(tmp_dir, "train_time.csv")).exists()) | |
| self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists()) | |
| self.assertTrue(Path(os.path.join(tmp_dir, "train_mem.csv")).exists()) | |
| self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists()) | |
| def test_trace_memory(self): | |
| MODEL_ID = "sshleifer/tiny-gpt2" | |
| def _check_summary_is_not_empty(summary): | |
| self.assertTrue(hasattr(summary, "sequential")) | |
| self.assertTrue(hasattr(summary, "cumulative")) | |
| self.assertTrue(hasattr(summary, "current")) | |
| self.assertTrue(hasattr(summary, "total")) | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| benchmark_args = PyTorchBenchmarkArguments( | |
| models=[MODEL_ID], | |
| training=True, | |
| inference=True, | |
| sequence_lengths=[8], | |
| batch_sizes=[1], | |
| log_filename=os.path.join(tmp_dir, "log.txt"), | |
| log_print=True, | |
| trace_memory_line_by_line=True, | |
| multi_process=False, | |
| ) | |
| benchmark = PyTorchBenchmark(benchmark_args) | |
| result = benchmark.run() | |
| _check_summary_is_not_empty(result.inference_summary) | |
| _check_summary_is_not_empty(result.train_summary) | |
| self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists()) | |