Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # Copyright (c) HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Finetuning the library models for multimodal multiclass prediction on MM-IMDB dataset.""" | |
| import argparse | |
| import glob | |
| import json | |
| import logging | |
| import os | |
| import random | |
| import numpy as np | |
| import torch | |
| from sklearn.metrics import f1_score | |
| from torch import nn | |
| from torch.utils.data import DataLoader, RandomSampler, SequentialSampler | |
| from torch.utils.data.distributed import DistributedSampler | |
| from tqdm import tqdm, trange | |
| from utils_mmimdb import ImageEncoder, JsonlDataset, collate_fn, get_image_transforms, get_mmimdb_labels | |
| import transformers | |
| from transformers import ( | |
| WEIGHTS_NAME, | |
| AdamW, | |
| AutoConfig, | |
| AutoModel, | |
| AutoTokenizer, | |
| MMBTConfig, | |
| MMBTForClassification, | |
| get_linear_schedule_with_warmup, | |
| ) | |
| from transformers.trainer_utils import is_main_process | |
| try: | |
| from torch.utils.tensorboard import SummaryWriter | |
| except ImportError: | |
| from tensorboardX import SummaryWriter | |
| logger = logging.getLogger(__name__) | |
| def set_seed(args): | |
| random.seed(args.seed) | |
| np.random.seed(args.seed) | |
| torch.manual_seed(args.seed) | |
| if args.n_gpu > 0: | |
| torch.cuda.manual_seed_all(args.seed) | |
| def train(args, train_dataset, model, tokenizer, criterion): | |
| """Train the model""" | |
| if args.local_rank in [-1, 0]: | |
| tb_writer = SummaryWriter() | |
| args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) | |
| train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) | |
| train_dataloader = DataLoader( | |
| train_dataset, | |
| sampler=train_sampler, | |
| batch_size=args.train_batch_size, | |
| collate_fn=collate_fn, | |
| num_workers=args.num_workers, | |
| ) | |
| if args.max_steps > 0: | |
| t_total = args.max_steps | |
| args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 | |
| else: | |
| t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs | |
| # Prepare optimizer and schedule (linear warmup and decay) | |
| no_decay = ["bias", "LayerNorm.weight"] | |
| optimizer_grouped_parameters = [ | |
| { | |
| "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], | |
| "weight_decay": args.weight_decay, | |
| }, | |
| {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, | |
| ] | |
| optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) | |
| scheduler = get_linear_schedule_with_warmup( | |
| optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total | |
| ) | |
| if args.fp16: | |
| try: | |
| from apex import amp | |
| except ImportError: | |
| raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
| model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
| # multi-gpu training (should be after apex fp16 initialization) | |
| if args.n_gpu > 1: | |
| model = nn.DataParallel(model) | |
| # Distributed training (should be after apex fp16 initialization) | |
| if args.local_rank != -1: | |
| model = nn.parallel.DistributedDataParallel( | |
| model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True | |
| ) | |
| # Train! | |
| logger.info("***** Running training *****") | |
| logger.info(" Num examples = %d", len(train_dataset)) | |
| logger.info(" Num Epochs = %d", args.num_train_epochs) | |
| logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) | |
| logger.info( | |
| " Total train batch size (w. parallel, distributed & accumulation) = %d", | |
| args.train_batch_size | |
| * args.gradient_accumulation_steps | |
| * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), | |
| ) | |
| logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) | |
| logger.info(" Total optimization steps = %d", t_total) | |
| global_step = 0 | |
| tr_loss, logging_loss = 0.0, 0.0 | |
| best_f1, n_no_improve = 0, 0 | |
| model.zero_grad() | |
| train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) | |
| set_seed(args) # Added here for reproductibility | |
| for _ in train_iterator: | |
| epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) | |
| for step, batch in enumerate(epoch_iterator): | |
| model.train() | |
| batch = tuple(t.to(args.device) for t in batch) | |
| labels = batch[5] | |
| inputs = { | |
| "input_ids": batch[0], | |
| "input_modal": batch[2], | |
| "attention_mask": batch[1], | |
| "modal_start_tokens": batch[3], | |
| "modal_end_tokens": batch[4], | |
| } | |
| outputs = model(**inputs) | |
| logits = outputs[0] # model outputs are always tuple in transformers (see doc) | |
| loss = criterion(logits, labels) | |
| if args.n_gpu > 1: | |
| loss = loss.mean() # mean() to average on multi-gpu parallel training | |
| if args.gradient_accumulation_steps > 1: | |
| loss = loss / args.gradient_accumulation_steps | |
| if args.fp16: | |
| with amp.scale_loss(loss, optimizer) as scaled_loss: | |
| scaled_loss.backward() | |
| else: | |
| loss.backward() | |
| tr_loss += loss.item() | |
| if (step + 1) % args.gradient_accumulation_steps == 0: | |
| if args.fp16: | |
| nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) | |
| else: | |
| nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
| optimizer.step() | |
| scheduler.step() # Update learning rate schedule | |
| model.zero_grad() | |
| global_step += 1 | |
| if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
| logs = {} | |
| if ( | |
| args.local_rank == -1 and args.evaluate_during_training | |
| ): # Only evaluate when single GPU otherwise metrics may not average well | |
| results = evaluate(args, model, tokenizer, criterion) | |
| for key, value in results.items(): | |
| eval_key = "eval_{}".format(key) | |
| logs[eval_key] = value | |
| loss_scalar = (tr_loss - logging_loss) / args.logging_steps | |
| learning_rate_scalar = scheduler.get_lr()[0] | |
| logs["learning_rate"] = learning_rate_scalar | |
| logs["loss"] = loss_scalar | |
| logging_loss = tr_loss | |
| for key, value in logs.items(): | |
| tb_writer.add_scalar(key, value, global_step) | |
| print(json.dumps({**logs, **{"step": global_step}})) | |
| if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: | |
| # Save model checkpoint | |
| output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) | |
| if not os.path.exists(output_dir): | |
| os.makedirs(output_dir) | |
| model_to_save = ( | |
| model.module if hasattr(model, "module") else model | |
| ) # Take care of distributed/parallel training | |
| torch.save(model_to_save.state_dict(), os.path.join(output_dir, WEIGHTS_NAME)) | |
| torch.save(args, os.path.join(output_dir, "training_args.bin")) | |
| logger.info("Saving model checkpoint to %s", output_dir) | |
| if args.max_steps > 0 and global_step > args.max_steps: | |
| epoch_iterator.close() | |
| break | |
| if args.max_steps > 0 and global_step > args.max_steps: | |
| train_iterator.close() | |
| break | |
| if args.local_rank == -1: | |
| results = evaluate(args, model, tokenizer, criterion) | |
| if results["micro_f1"] > best_f1: | |
| best_f1 = results["micro_f1"] | |
| n_no_improve = 0 | |
| else: | |
| n_no_improve += 1 | |
| if n_no_improve > args.patience: | |
| train_iterator.close() | |
| break | |
| if args.local_rank in [-1, 0]: | |
| tb_writer.close() | |
| return global_step, tr_loss / global_step | |
| def evaluate(args, model, tokenizer, criterion, prefix=""): | |
| # Loop to handle MNLI double evaluation (matched, mis-matched) | |
| eval_output_dir = args.output_dir | |
| eval_dataset = load_examples(args, tokenizer, evaluate=True) | |
| if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: | |
| os.makedirs(eval_output_dir) | |
| args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
| # Note that DistributedSampler samples randomly | |
| eval_sampler = SequentialSampler(eval_dataset) | |
| eval_dataloader = DataLoader( | |
| eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate_fn | |
| ) | |
| # multi-gpu eval | |
| if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): | |
| model = nn.DataParallel(model) | |
| # Eval! | |
| logger.info("***** Running evaluation {} *****".format(prefix)) | |
| logger.info(" Num examples = %d", len(eval_dataset)) | |
| logger.info(" Batch size = %d", args.eval_batch_size) | |
| eval_loss = 0.0 | |
| nb_eval_steps = 0 | |
| preds = None | |
| out_label_ids = None | |
| for batch in tqdm(eval_dataloader, desc="Evaluating"): | |
| model.eval() | |
| batch = tuple(t.to(args.device) for t in batch) | |
| with torch.no_grad(): | |
| batch = tuple(t.to(args.device) for t in batch) | |
| labels = batch[5] | |
| inputs = { | |
| "input_ids": batch[0], | |
| "input_modal": batch[2], | |
| "attention_mask": batch[1], | |
| "modal_start_tokens": batch[3], | |
| "modal_end_tokens": batch[4], | |
| } | |
| outputs = model(**inputs) | |
| logits = outputs[0] # model outputs are always tuple in transformers (see doc) | |
| tmp_eval_loss = criterion(logits, labels) | |
| eval_loss += tmp_eval_loss.mean().item() | |
| nb_eval_steps += 1 | |
| if preds is None: | |
| preds = torch.sigmoid(logits).detach().cpu().numpy() > 0.5 | |
| out_label_ids = labels.detach().cpu().numpy() | |
| else: | |
| preds = np.append(preds, torch.sigmoid(logits).detach().cpu().numpy() > 0.5, axis=0) | |
| out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0) | |
| eval_loss = eval_loss / nb_eval_steps | |
| result = { | |
| "loss": eval_loss, | |
| "macro_f1": f1_score(out_label_ids, preds, average="macro"), | |
| "micro_f1": f1_score(out_label_ids, preds, average="micro"), | |
| } | |
| output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") | |
| with open(output_eval_file, "w") as writer: | |
| logger.info("***** Eval results {} *****".format(prefix)) | |
| for key in sorted(result.keys()): | |
| logger.info(" %s = %s", key, str(result[key])) | |
| writer.write("%s = %s\n" % (key, str(result[key]))) | |
| return result | |
| def load_examples(args, tokenizer, evaluate=False): | |
| path = os.path.join(args.data_dir, "dev.jsonl" if evaluate else "train.jsonl") | |
| transforms = get_image_transforms() | |
| labels = get_mmimdb_labels() | |
| dataset = JsonlDataset(path, tokenizer, transforms, labels, args.max_seq_length - args.num_image_embeds - 2) | |
| return dataset | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| # Required parameters | |
| parser.add_argument( | |
| "--data_dir", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="The input data dir. Should contain the .jsonl files for MMIMDB.", | |
| ) | |
| parser.add_argument( | |
| "--model_name_or_path", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models", | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| # Other parameters | |
| parser.add_argument( | |
| "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" | |
| ) | |
| parser.add_argument( | |
| "--tokenizer_name", | |
| default="", | |
| type=str, | |
| help="Pretrained tokenizer name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| default=None, | |
| type=str, | |
| help="Where do you want to store the pre-trained models downloaded from huggingface.co", | |
| ) | |
| parser.add_argument( | |
| "--max_seq_length", | |
| default=128, | |
| type=int, | |
| help=( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--num_image_embeds", default=1, type=int, help="Number of Image Embeddings from the Image Encoder" | |
| ) | |
| parser.add_argument("--do_train", action="store_true", help="Whether to run training.") | |
| parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") | |
| parser.add_argument( | |
| "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." | |
| ) | |
| parser.add_argument( | |
| "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." | |
| ) | |
| parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") | |
| parser.add_argument( | |
| "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") | |
| parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") | |
| parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument( | |
| "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." | |
| ) | |
| parser.add_argument("--patience", default=5, type=int, help="Patience for Early Stopping.") | |
| parser.add_argument( | |
| "--max_steps", | |
| default=-1, | |
| type=int, | |
| help="If > 0: set total number of training steps to perform. Override num_train_epochs.", | |
| ) | |
| parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") | |
| parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") | |
| parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") | |
| parser.add_argument( | |
| "--eval_all_checkpoints", | |
| action="store_true", | |
| help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", | |
| ) | |
| parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") | |
| parser.add_argument("--num_workers", type=int, default=8, help="number of worker threads for dataloading") | |
| parser.add_argument( | |
| "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" | |
| ) | |
| parser.add_argument( | |
| "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" | |
| ) | |
| parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") | |
| parser.add_argument( | |
| "--fp16", | |
| action="store_true", | |
| help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", | |
| ) | |
| parser.add_argument( | |
| "--fp16_opt_level", | |
| type=str, | |
| default="O1", | |
| help=( | |
| "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
| "See details at https://nvidia.github.io/apex/amp.html" | |
| ), | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") | |
| parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") | |
| args = parser.parse_args() | |
| if ( | |
| os.path.exists(args.output_dir) | |
| and os.listdir(args.output_dir) | |
| and args.do_train | |
| and not args.overwrite_output_dir | |
| ): | |
| raise ValueError( | |
| "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( | |
| args.output_dir | |
| ) | |
| ) | |
| # Setup distant debugging if needed | |
| if args.server_ip and args.server_port: | |
| # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
| import ptvsd | |
| print("Waiting for debugger attach") | |
| ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
| ptvsd.wait_for_attach() | |
| # Setup CUDA, GPU & distributed training | |
| if args.local_rank == -1 or args.no_cuda: | |
| device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
| args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() | |
| else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs | |
| torch.cuda.set_device(args.local_rank) | |
| device = torch.device("cuda", args.local_rank) | |
| torch.distributed.init_process_group(backend="nccl") | |
| args.n_gpu = 1 | |
| args.device = device | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, | |
| ) | |
| logger.warning( | |
| "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
| args.local_rank, | |
| device, | |
| args.n_gpu, | |
| bool(args.local_rank != -1), | |
| args.fp16, | |
| ) | |
| # Set the verbosity to info of the Transformers logger (on main process only): | |
| if is_main_process(args.local_rank): | |
| transformers.utils.logging.set_verbosity_info() | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| # Set seed | |
| set_seed(args) | |
| # Load pretrained model and tokenizer | |
| if args.local_rank not in [-1, 0]: | |
| torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
| # Setup model | |
| labels = get_mmimdb_labels() | |
| num_labels = len(labels) | |
| transformer_config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, | |
| do_lower_case=args.do_lower_case, | |
| cache_dir=args.cache_dir, | |
| ) | |
| transformer = AutoModel.from_pretrained( | |
| args.model_name_or_path, config=transformer_config, cache_dir=args.cache_dir | |
| ) | |
| img_encoder = ImageEncoder(args) | |
| config = MMBTConfig(transformer_config, num_labels=num_labels) | |
| model = MMBTForClassification(config, transformer, img_encoder) | |
| if args.local_rank == 0: | |
| torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
| model.to(args.device) | |
| logger.info("Training/evaluation parameters %s", args) | |
| # Training | |
| if args.do_train: | |
| train_dataset = load_examples(args, tokenizer, evaluate=False) | |
| label_frequences = train_dataset.get_label_frequencies() | |
| label_frequences = [label_frequences[l] for l in labels] | |
| label_weights = ( | |
| torch.tensor(label_frequences, device=args.device, dtype=torch.float) / len(train_dataset) | |
| ) ** -1 | |
| criterion = nn.BCEWithLogitsLoss(pos_weight=label_weights) | |
| global_step, tr_loss = train(args, train_dataset, model, tokenizer, criterion) | |
| logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) | |
| # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() | |
| if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): | |
| logger.info("Saving model checkpoint to %s", args.output_dir) | |
| # Save a trained model, configuration and tokenizer using `save_pretrained()`. | |
| # They can then be reloaded using `from_pretrained()` | |
| model_to_save = ( | |
| model.module if hasattr(model, "module") else model | |
| ) # Take care of distributed/parallel training | |
| torch.save(model_to_save.state_dict(), os.path.join(args.output_dir, WEIGHTS_NAME)) | |
| tokenizer.save_pretrained(args.output_dir) | |
| # Good practice: save your training arguments together with the trained model | |
| torch.save(args, os.path.join(args.output_dir, "training_args.bin")) | |
| # Load a trained model and vocabulary that you have fine-tuned | |
| model = MMBTForClassification(config, transformer, img_encoder) | |
| model.load_state_dict(torch.load(os.path.join(args.output_dir, WEIGHTS_NAME))) | |
| tokenizer = AutoTokenizer.from_pretrained(args.output_dir) | |
| model.to(args.device) | |
| # Evaluation | |
| results = {} | |
| if args.do_eval and args.local_rank in [-1, 0]: | |
| checkpoints = [args.output_dir] | |
| if args.eval_all_checkpoints: | |
| checkpoints = [ | |
| os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) | |
| ] | |
| logger.info("Evaluate the following checkpoints: %s", checkpoints) | |
| for checkpoint in checkpoints: | |
| global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" | |
| prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" | |
| model = MMBTForClassification(config, transformer, img_encoder) | |
| model.load_state_dict(torch.load(checkpoint)) | |
| model.to(args.device) | |
| result = evaluate(args, model, tokenizer, criterion, prefix=prefix) | |
| result = {k + "_{}".format(global_step): v for k, v in result.items()} | |
| results.update(result) | |
| return results | |
| if __name__ == "__main__": | |
| main() | |