Spaces:
Paused
Paused
| import copy | |
| from abc import abstractmethod | |
| from typing import Dict, Tuple | |
| import torch | |
| from coqpit import Coqpit | |
| from torch import nn | |
| from TTS.tts.layers.losses import TacotronLoss | |
| from TTS.tts.models.base_tts import BaseTTS | |
| from TTS.tts.utils.helpers import sequence_mask | |
| from TTS.tts.utils.speakers import SpeakerManager | |
| from TTS.tts.utils.synthesis import synthesis | |
| from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
| from TTS.tts.utils.visual import plot_alignment, plot_spectrogram | |
| from TTS.utils.generic_utils import format_aux_input | |
| from TTS.utils.io import load_fsspec | |
| from TTS.utils.training import gradual_training_scheduler | |
| class BaseTacotron(BaseTTS): | |
| """Base class shared by Tacotron and Tacotron2""" | |
| def __init__( | |
| self, | |
| config: "TacotronConfig", | |
| ap: "AudioProcessor", | |
| tokenizer: "TTSTokenizer", | |
| speaker_manager: SpeakerManager = None, | |
| ): | |
| super().__init__(config, ap, tokenizer, speaker_manager) | |
| # pass all config fields as class attributes | |
| for key in config: | |
| setattr(self, key, config[key]) | |
| # layers | |
| self.embedding = None | |
| self.encoder = None | |
| self.decoder = None | |
| self.postnet = None | |
| # init tensors | |
| self.embedded_speakers = None | |
| self.embedded_speakers_projected = None | |
| # global style token | |
| if self.gst and self.use_gst: | |
| self.decoder_in_features += self.gst.gst_embedding_dim # add gst embedding dim | |
| self.gst_layer = None | |
| # Capacitron | |
| if self.capacitron_vae and self.use_capacitron_vae: | |
| self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim # add capacitron embedding dim | |
| self.capacitron_vae_layer = None | |
| # additional layers | |
| self.decoder_backward = None | |
| self.coarse_decoder = None | |
| def _format_aux_input(aux_input: Dict) -> Dict: | |
| """Set missing fields to their default values""" | |
| if aux_input: | |
| return format_aux_input({"d_vectors": None, "speaker_ids": None}, aux_input) | |
| return None | |
| ############################# | |
| # INIT FUNCTIONS | |
| ############################# | |
| def _init_backward_decoder(self): | |
| """Init the backward decoder for Forward-Backward decoding.""" | |
| self.decoder_backward = copy.deepcopy(self.decoder) | |
| def _init_coarse_decoder(self): | |
| """Init the coarse decoder for Double-Decoder Consistency.""" | |
| self.coarse_decoder = copy.deepcopy(self.decoder) | |
| self.coarse_decoder.r_init = self.ddc_r | |
| self.coarse_decoder.set_r(self.ddc_r) | |
| ############################# | |
| # CORE FUNCTIONS | |
| ############################# | |
| def forward(self): | |
| pass | |
| def inference(self): | |
| pass | |
| def load_checkpoint( | |
| self, config, checkpoint_path, eval=False, cache=False | |
| ): # pylint: disable=unused-argument, redefined-builtin | |
| """Load model checkpoint and set up internals. | |
| Args: | |
| config (Coqpi): model configuration. | |
| checkpoint_path (str): path to checkpoint file. | |
| eval (bool, optional): whether to load model for evaluation. | |
| cache (bool, optional): If True, cache the file locally for subsequent calls. It is cached under `get_user_data_dir()/tts_cache`. Defaults to False. | |
| """ | |
| state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) | |
| self.load_state_dict(state["model"]) | |
| # TODO: set r in run-time by taking it from the new config | |
| if "r" in state: | |
| # set r from the state (for compatibility with older checkpoints) | |
| self.decoder.set_r(state["r"]) | |
| elif "config" in state: | |
| # set r from config used at training time (for inference) | |
| self.decoder.set_r(state["config"]["r"]) | |
| else: | |
| # set r from the new config (for new-models) | |
| self.decoder.set_r(config.r) | |
| if eval: | |
| self.eval() | |
| print(f" > Model's reduction rate `r` is set to: {self.decoder.r}") | |
| assert not self.training | |
| def get_criterion(self) -> nn.Module: | |
| """Get the model criterion used in training.""" | |
| return TacotronLoss(self.config) | |
| def init_from_config(config: Coqpit): | |
| """Initialize model from config.""" | |
| from TTS.utils.audio import AudioProcessor | |
| ap = AudioProcessor.init_from_config(config) | |
| tokenizer = TTSTokenizer.init_from_config(config) | |
| speaker_manager = SpeakerManager.init_from_config(config) | |
| return BaseTacotron(config, ap, tokenizer, speaker_manager) | |
| ########################## | |
| # TEST AND LOG FUNCTIONS # | |
| ########################## | |
| def test_run(self, assets: Dict) -> Tuple[Dict, Dict]: | |
| """Generic test run for `tts` models used by `Trainer`. | |
| You can override this for a different behaviour. | |
| Args: | |
| assets (dict): A dict of training assets. For `tts` models, it must include `{'audio_processor': ap}`. | |
| Returns: | |
| Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard. | |
| """ | |
| print(" | > Synthesizing test sentences.") | |
| test_audios = {} | |
| test_figures = {} | |
| test_sentences = self.config.test_sentences | |
| aux_inputs = self._get_test_aux_input() | |
| for idx, sen in enumerate(test_sentences): | |
| outputs_dict = synthesis( | |
| self, | |
| sen, | |
| self.config, | |
| "cuda" in str(next(self.parameters()).device), | |
| speaker_id=aux_inputs["speaker_id"], | |
| d_vector=aux_inputs["d_vector"], | |
| style_wav=aux_inputs["style_wav"], | |
| use_griffin_lim=True, | |
| do_trim_silence=False, | |
| ) | |
| test_audios["{}-audio".format(idx)] = outputs_dict["wav"] | |
| test_figures["{}-prediction".format(idx)] = plot_spectrogram( | |
| outputs_dict["outputs"]["model_outputs"], self.ap, output_fig=False | |
| ) | |
| test_figures["{}-alignment".format(idx)] = plot_alignment( | |
| outputs_dict["outputs"]["alignments"], output_fig=False | |
| ) | |
| return {"figures": test_figures, "audios": test_audios} | |
| def test_log( | |
| self, outputs: dict, logger: "Logger", assets: dict, steps: int # pylint: disable=unused-argument | |
| ) -> None: | |
| logger.test_audios(steps, outputs["audios"], self.ap.sample_rate) | |
| logger.test_figures(steps, outputs["figures"]) | |
| ############################# | |
| # COMMON COMPUTE FUNCTIONS | |
| ############################# | |
| def compute_masks(self, text_lengths, mel_lengths): | |
| """Compute masks against sequence paddings.""" | |
| # B x T_in_max (boolean) | |
| input_mask = sequence_mask(text_lengths) | |
| output_mask = None | |
| if mel_lengths is not None: | |
| max_len = mel_lengths.max() | |
| r = self.decoder.r | |
| max_len = max_len + (r - (max_len % r)) if max_len % r > 0 else max_len | |
| output_mask = sequence_mask(mel_lengths, max_len=max_len) | |
| return input_mask, output_mask | |
| def _backward_pass(self, mel_specs, encoder_outputs, mask): | |
| """Run backwards decoder""" | |
| decoder_outputs_b, alignments_b, _ = self.decoder_backward( | |
| encoder_outputs, torch.flip(mel_specs, dims=(1,)), mask | |
| ) | |
| decoder_outputs_b = decoder_outputs_b.transpose(1, 2).contiguous() | |
| return decoder_outputs_b, alignments_b | |
| def _coarse_decoder_pass(self, mel_specs, encoder_outputs, alignments, input_mask): | |
| """Double Decoder Consistency""" | |
| T = mel_specs.shape[1] | |
| if T % self.coarse_decoder.r > 0: | |
| padding_size = self.coarse_decoder.r - (T % self.coarse_decoder.r) | |
| mel_specs = torch.nn.functional.pad(mel_specs, (0, 0, 0, padding_size, 0, 0)) | |
| decoder_outputs_backward, alignments_backward, _ = self.coarse_decoder( | |
| encoder_outputs.detach(), mel_specs, input_mask | |
| ) | |
| # scale_factor = self.decoder.r_init / self.decoder.r | |
| alignments_backward = torch.nn.functional.interpolate( | |
| alignments_backward.transpose(1, 2), | |
| size=alignments.shape[1], | |
| mode="nearest", | |
| ).transpose(1, 2) | |
| decoder_outputs_backward = decoder_outputs_backward.transpose(1, 2) | |
| decoder_outputs_backward = decoder_outputs_backward[:, :T, :] | |
| return decoder_outputs_backward, alignments_backward | |
| ############################# | |
| # EMBEDDING FUNCTIONS | |
| ############################# | |
| def compute_gst(self, inputs, style_input, speaker_embedding=None): | |
| """Compute global style token""" | |
| if isinstance(style_input, dict): | |
| # multiply each style token with a weight | |
| query = torch.zeros(1, 1, self.gst.gst_embedding_dim // 2).type_as(inputs) | |
| if speaker_embedding is not None: | |
| query = torch.cat([query, speaker_embedding.reshape(1, 1, -1)], dim=-1) | |
| _GST = torch.tanh(self.gst_layer.style_token_layer.style_tokens) | |
| gst_outputs = torch.zeros(1, 1, self.gst.gst_embedding_dim).type_as(inputs) | |
| for k_token, v_amplifier in style_input.items(): | |
| key = _GST[int(k_token)].unsqueeze(0).expand(1, -1, -1) | |
| gst_outputs_att = self.gst_layer.style_token_layer.attention(query, key) | |
| gst_outputs = gst_outputs + gst_outputs_att * v_amplifier | |
| elif style_input is None: | |
| # ignore style token and return zero tensor | |
| gst_outputs = torch.zeros(1, 1, self.gst.gst_embedding_dim).type_as(inputs) | |
| else: | |
| # compute style tokens | |
| gst_outputs = self.gst_layer(style_input, speaker_embedding) # pylint: disable=not-callable | |
| inputs = self._concat_speaker_embedding(inputs, gst_outputs) | |
| return inputs | |
| def compute_capacitron_VAE_embedding(self, inputs, reference_mel_info, text_info=None, speaker_embedding=None): | |
| """Capacitron Variational Autoencoder""" | |
| ( | |
| VAE_outputs, | |
| posterior_distribution, | |
| prior_distribution, | |
| capacitron_beta, | |
| ) = self.capacitron_vae_layer( | |
| reference_mel_info, | |
| text_info, | |
| speaker_embedding, # pylint: disable=not-callable | |
| ) | |
| VAE_outputs = VAE_outputs.to(inputs.device) | |
| encoder_output = self._concat_speaker_embedding( | |
| inputs, VAE_outputs | |
| ) # concatenate to the output of the basic tacotron encoder | |
| return ( | |
| encoder_output, | |
| posterior_distribution, | |
| prior_distribution, | |
| capacitron_beta, | |
| ) | |
| def _add_speaker_embedding(outputs, embedded_speakers): | |
| embedded_speakers_ = embedded_speakers.expand(outputs.size(0), outputs.size(1), -1) | |
| outputs = outputs + embedded_speakers_ | |
| return outputs | |
| def _concat_speaker_embedding(outputs, embedded_speakers): | |
| embedded_speakers_ = embedded_speakers.expand(outputs.size(0), outputs.size(1), -1) | |
| outputs = torch.cat([outputs, embedded_speakers_], dim=-1) | |
| return outputs | |
| ############################# | |
| # CALLBACKS | |
| ############################# | |
| def on_epoch_start(self, trainer): | |
| """Callback for setting values wrt gradual training schedule. | |
| Args: | |
| trainer (TrainerTTS): TTS trainer object that is used to train this model. | |
| """ | |
| if self.gradual_training: | |
| r, trainer.config.batch_size = gradual_training_scheduler(trainer.total_steps_done, trainer.config) | |
| trainer.config.r = r | |
| self.decoder.set_r(r) | |
| if trainer.config.bidirectional_decoder: | |
| trainer.model.decoder_backward.set_r(r) | |
| print(f"\n > Number of output frames: {self.decoder.r}") | |