Spaces:
Paused
Paused
| import os | |
| from dataclasses import dataclass, field | |
| from trainer import Trainer, TrainerArgs | |
| from TTS.config import load_config, register_config | |
| from TTS.tts.datasets import load_tts_samples | |
| from TTS.tts.models import setup_model | |
| class TrainTTSArgs(TrainerArgs): | |
| config_path: str = field(default=None, metadata={"help": "Path to the config file."}) | |
| def main(): | |
| """Run `tts` model training directly by a `config.json` file.""" | |
| # init trainer args | |
| train_args = TrainTTSArgs() | |
| parser = train_args.init_argparse(arg_prefix="") | |
| # override trainer args from comman-line args | |
| args, config_overrides = parser.parse_known_args() | |
| train_args.parse_args(args) | |
| # load config.json and register | |
| if args.config_path or args.continue_path: | |
| if args.config_path: | |
| # init from a file | |
| config = load_config(args.config_path) | |
| if len(config_overrides) > 0: | |
| config.parse_known_args(config_overrides, relaxed_parser=True) | |
| elif args.continue_path: | |
| # continue from a prev experiment | |
| config = load_config(os.path.join(args.continue_path, "config.json")) | |
| if len(config_overrides) > 0: | |
| config.parse_known_args(config_overrides, relaxed_parser=True) | |
| else: | |
| # init from console args | |
| from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel | |
| config_base = BaseTrainingConfig() | |
| config_base.parse_known_args(config_overrides) | |
| config = register_config(config_base.model)() | |
| # load training samples | |
| train_samples, eval_samples = load_tts_samples( | |
| config.datasets, | |
| eval_split=True, | |
| eval_split_max_size=config.eval_split_max_size, | |
| eval_split_size=config.eval_split_size, | |
| ) | |
| # init the model from config | |
| model = setup_model(config, train_samples + eval_samples) | |
| # init the trainer and π | |
| trainer = Trainer( | |
| train_args, | |
| model.config, | |
| config.output_path, | |
| model=model, | |
| train_samples=train_samples, | |
| eval_samples=eval_samples, | |
| parse_command_line_args=False, | |
| ) | |
| trainer.fit() | |
| if __name__ == "__main__": | |
| main() | |