Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Named entity recognition fine-tuning: utilities to work with CoNLL-2003 task. """ | |
| import logging | |
| import os | |
| from dataclasses import dataclass | |
| from enum import Enum | |
| from typing import List, Optional, Union | |
| from filelock import FileLock | |
| from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available | |
| logger = logging.getLogger(__name__) | |
| class InputExample: | |
| """ | |
| A single training/test example for token classification. | |
| Args: | |
| guid: Unique id for the example. | |
| words: list. The words of the sequence. | |
| labels: (Optional) list. The labels for each word of the sequence. This should be | |
| specified for train and dev examples, but not for test examples. | |
| """ | |
| guid: str | |
| words: List[str] | |
| labels: Optional[List[str]] | |
| class InputFeatures: | |
| """ | |
| A single set of features of data. | |
| Property names are the same names as the corresponding inputs to a model. | |
| """ | |
| input_ids: List[int] | |
| attention_mask: List[int] | |
| token_type_ids: Optional[List[int]] = None | |
| label_ids: Optional[List[int]] = None | |
| class Split(Enum): | |
| train = "train" | |
| dev = "dev" | |
| test = "test" | |
| class TokenClassificationTask: | |
| def read_examples_from_file(data_dir, mode: Union[Split, str]) -> List[InputExample]: | |
| raise NotImplementedError | |
| def get_labels(path: str) -> List[str]: | |
| raise NotImplementedError | |
| def convert_examples_to_features( | |
| examples: List[InputExample], | |
| label_list: List[str], | |
| max_seq_length: int, | |
| tokenizer: PreTrainedTokenizer, | |
| cls_token_at_end=False, | |
| cls_token="[CLS]", | |
| cls_token_segment_id=1, | |
| sep_token="[SEP]", | |
| sep_token_extra=False, | |
| pad_on_left=False, | |
| pad_token=0, | |
| pad_token_segment_id=0, | |
| pad_token_label_id=-100, | |
| sequence_a_segment_id=0, | |
| mask_padding_with_zero=True, | |
| ) -> List[InputFeatures]: | |
| """Loads a data file into a list of `InputFeatures` | |
| `cls_token_at_end` define the location of the CLS token: | |
| - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] | |
| - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] | |
| `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) | |
| """ | |
| # TODO clean up all this to leverage built-in features of tokenizers | |
| label_map = {label: i for i, label in enumerate(label_list)} | |
| features = [] | |
| for ex_index, example in enumerate(examples): | |
| if ex_index % 10_000 == 0: | |
| logger.info("Writing example %d of %d", ex_index, len(examples)) | |
| tokens = [] | |
| label_ids = [] | |
| for word, label in zip(example.words, example.labels): | |
| word_tokens = tokenizer.tokenize(word) | |
| # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. | |
| if len(word_tokens) > 0: | |
| tokens.extend(word_tokens) | |
| # Use the real label id for the first token of the word, and padding ids for the remaining tokens | |
| label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1)) | |
| # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. | |
| special_tokens_count = tokenizer.num_special_tokens_to_add() | |
| if len(tokens) > max_seq_length - special_tokens_count: | |
| tokens = tokens[: (max_seq_length - special_tokens_count)] | |
| label_ids = label_ids[: (max_seq_length - special_tokens_count)] | |
| # The convention in BERT is: | |
| # (a) For sequence pairs: | |
| # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] | |
| # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 | |
| # (b) For single sequences: | |
| # tokens: [CLS] the dog is hairy . [SEP] | |
| # type_ids: 0 0 0 0 0 0 0 | |
| # | |
| # Where "type_ids" are used to indicate whether this is the first | |
| # sequence or the second sequence. The embedding vectors for `type=0` and | |
| # `type=1` were learned during pre-training and are added to the wordpiece | |
| # embedding vector (and position vector). This is not *strictly* necessary | |
| # since the [SEP] token unambiguously separates the sequences, but it makes | |
| # it easier for the model to learn the concept of sequences. | |
| # | |
| # For classification tasks, the first vector (corresponding to [CLS]) is | |
| # used as the "sentence vector". Note that this only makes sense because | |
| # the entire model is fine-tuned. | |
| tokens += [sep_token] | |
| label_ids += [pad_token_label_id] | |
| if sep_token_extra: | |
| # roberta uses an extra separator b/w pairs of sentences | |
| tokens += [sep_token] | |
| label_ids += [pad_token_label_id] | |
| segment_ids = [sequence_a_segment_id] * len(tokens) | |
| if cls_token_at_end: | |
| tokens += [cls_token] | |
| label_ids += [pad_token_label_id] | |
| segment_ids += [cls_token_segment_id] | |
| else: | |
| tokens = [cls_token] + tokens | |
| label_ids = [pad_token_label_id] + label_ids | |
| segment_ids = [cls_token_segment_id] + segment_ids | |
| input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
| # The mask has 1 for real tokens and 0 for padding tokens. Only real | |
| # tokens are attended to. | |
| input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) | |
| # Zero-pad up to the sequence length. | |
| padding_length = max_seq_length - len(input_ids) | |
| if pad_on_left: | |
| input_ids = ([pad_token] * padding_length) + input_ids | |
| input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask | |
| segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids | |
| label_ids = ([pad_token_label_id] * padding_length) + label_ids | |
| else: | |
| input_ids += [pad_token] * padding_length | |
| input_mask += [0 if mask_padding_with_zero else 1] * padding_length | |
| segment_ids += [pad_token_segment_id] * padding_length | |
| label_ids += [pad_token_label_id] * padding_length | |
| assert len(input_ids) == max_seq_length | |
| assert len(input_mask) == max_seq_length | |
| assert len(segment_ids) == max_seq_length | |
| assert len(label_ids) == max_seq_length | |
| if ex_index < 5: | |
| logger.info("*** Example ***") | |
| logger.info("guid: %s", example.guid) | |
| logger.info("tokens: %s", " ".join([str(x) for x in tokens])) | |
| logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) | |
| logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) | |
| logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) | |
| logger.info("label_ids: %s", " ".join([str(x) for x in label_ids])) | |
| if "token_type_ids" not in tokenizer.model_input_names: | |
| segment_ids = None | |
| features.append( | |
| InputFeatures( | |
| input_ids=input_ids, attention_mask=input_mask, token_type_ids=segment_ids, label_ids=label_ids | |
| ) | |
| ) | |
| return features | |
| if is_torch_available(): | |
| import torch | |
| from torch import nn | |
| from torch.utils.data import Dataset | |
| class TokenClassificationDataset(Dataset): | |
| """ | |
| This will be superseded by a framework-agnostic approach | |
| soon. | |
| """ | |
| features: List[InputFeatures] | |
| pad_token_label_id: int = nn.CrossEntropyLoss().ignore_index | |
| # Use cross entropy ignore_index as padding label id so that only | |
| # real label ids contribute to the loss later. | |
| def __init__( | |
| self, | |
| token_classification_task: TokenClassificationTask, | |
| data_dir: str, | |
| tokenizer: PreTrainedTokenizer, | |
| labels: List[str], | |
| model_type: str, | |
| max_seq_length: Optional[int] = None, | |
| overwrite_cache=False, | |
| mode: Split = Split.train, | |
| ): | |
| # Load data features from cache or dataset file | |
| cached_features_file = os.path.join( | |
| data_dir, | |
| "cached_{}_{}_{}".format(mode.value, tokenizer.__class__.__name__, str(max_seq_length)), | |
| ) | |
| # Make sure only the first process in distributed training processes the dataset, | |
| # and the others will use the cache. | |
| lock_path = cached_features_file + ".lock" | |
| with FileLock(lock_path): | |
| if os.path.exists(cached_features_file) and not overwrite_cache: | |
| logger.info(f"Loading features from cached file {cached_features_file}") | |
| self.features = torch.load(cached_features_file) | |
| else: | |
| logger.info(f"Creating features from dataset file at {data_dir}") | |
| examples = token_classification_task.read_examples_from_file(data_dir, mode) | |
| # TODO clean up all this to leverage built-in features of tokenizers | |
| self.features = token_classification_task.convert_examples_to_features( | |
| examples, | |
| labels, | |
| max_seq_length, | |
| tokenizer, | |
| cls_token_at_end=bool(model_type in ["xlnet"]), | |
| # xlnet has a cls token at the end | |
| cls_token=tokenizer.cls_token, | |
| cls_token_segment_id=2 if model_type in ["xlnet"] else 0, | |
| sep_token=tokenizer.sep_token, | |
| sep_token_extra=False, | |
| # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 | |
| pad_on_left=bool(tokenizer.padding_side == "left"), | |
| pad_token=tokenizer.pad_token_id, | |
| pad_token_segment_id=tokenizer.pad_token_type_id, | |
| pad_token_label_id=self.pad_token_label_id, | |
| ) | |
| logger.info(f"Saving features into cached file {cached_features_file}") | |
| torch.save(self.features, cached_features_file) | |
| def __len__(self): | |
| return len(self.features) | |
| def __getitem__(self, i) -> InputFeatures: | |
| return self.features[i] | |
| if is_tf_available(): | |
| import tensorflow as tf | |
| class TFTokenClassificationDataset: | |
| """ | |
| This will be superseded by a framework-agnostic approach | |
| soon. | |
| """ | |
| features: List[InputFeatures] | |
| pad_token_label_id: int = -100 | |
| # Use cross entropy ignore_index as padding label id so that only | |
| # real label ids contribute to the loss later. | |
| def __init__( | |
| self, | |
| token_classification_task: TokenClassificationTask, | |
| data_dir: str, | |
| tokenizer: PreTrainedTokenizer, | |
| labels: List[str], | |
| model_type: str, | |
| max_seq_length: Optional[int] = None, | |
| overwrite_cache=False, | |
| mode: Split = Split.train, | |
| ): | |
| examples = token_classification_task.read_examples_from_file(data_dir, mode) | |
| # TODO clean up all this to leverage built-in features of tokenizers | |
| self.features = token_classification_task.convert_examples_to_features( | |
| examples, | |
| labels, | |
| max_seq_length, | |
| tokenizer, | |
| cls_token_at_end=bool(model_type in ["xlnet"]), | |
| # xlnet has a cls token at the end | |
| cls_token=tokenizer.cls_token, | |
| cls_token_segment_id=2 if model_type in ["xlnet"] else 0, | |
| sep_token=tokenizer.sep_token, | |
| sep_token_extra=False, | |
| # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 | |
| pad_on_left=bool(tokenizer.padding_side == "left"), | |
| pad_token=tokenizer.pad_token_id, | |
| pad_token_segment_id=tokenizer.pad_token_type_id, | |
| pad_token_label_id=self.pad_token_label_id, | |
| ) | |
| def gen(): | |
| for ex in self.features: | |
| if ex.token_type_ids is None: | |
| yield ( | |
| {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, | |
| ex.label_ids, | |
| ) | |
| else: | |
| yield ( | |
| { | |
| "input_ids": ex.input_ids, | |
| "attention_mask": ex.attention_mask, | |
| "token_type_ids": ex.token_type_ids, | |
| }, | |
| ex.label_ids, | |
| ) | |
| if "token_type_ids" not in tokenizer.model_input_names: | |
| self.dataset = tf.data.Dataset.from_generator( | |
| gen, | |
| ({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64), | |
| ( | |
| {"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])}, | |
| tf.TensorShape([None]), | |
| ), | |
| ) | |
| else: | |
| self.dataset = tf.data.Dataset.from_generator( | |
| gen, | |
| ({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64), | |
| ( | |
| { | |
| "input_ids": tf.TensorShape([None]), | |
| "attention_mask": tf.TensorShape([None]), | |
| "token_type_ids": tf.TensorShape([None]), | |
| }, | |
| tf.TensorShape([None]), | |
| ), | |
| ) | |
| def get_dataset(self): | |
| self.dataset = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features))) | |
| return self.dataset | |
| def __len__(self): | |
| return len(self.features) | |
| def __getitem__(self, i) -> InputFeatures: | |
| return self.features[i] | |