Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import copy | |
| import inspect | |
| from transformers.testing_utils import require_torch, torch_device | |
| from transformers.utils.backbone_utils import BackboneType | |
| class BackboneTesterMixin: | |
| all_model_classes = () | |
| has_attentions = True | |
| def test_config(self): | |
| config_class = self.config_class | |
| # test default config | |
| config = config_class() | |
| self.assertIsNotNone(config) | |
| num_stages = len(config.depths) if hasattr(config, "depths") else config.num_hidden_layers | |
| expected_stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_stages + 1)] | |
| self.assertEqual(config.stage_names, expected_stage_names) | |
| self.assertTrue(set(config.out_features).issubset(set(config.stage_names))) | |
| # Test out_features and out_indices are correctly set | |
| # out_features and out_indices both None | |
| config = config_class(out_features=None, out_indices=None) | |
| self.assertEqual(config.out_features, [config.stage_names[-1]]) | |
| self.assertEqual(config.out_indices, [len(config.stage_names) - 1]) | |
| # out_features and out_indices both set | |
| config = config_class(out_features=["stem", "stage1"], out_indices=[0, 1]) | |
| self.assertEqual(config.out_features, ["stem", "stage1"]) | |
| self.assertEqual(config.out_indices, [0, 1]) | |
| # Only out_features set | |
| config = config_class(out_features=["stage1", "stage3"]) | |
| self.assertEqual(config.out_features, ["stage1", "stage3"]) | |
| self.assertEqual(config.out_indices, [1, 3]) | |
| # Only out_indices set | |
| config = config_class(out_indices=[0, 2]) | |
| self.assertEqual(config.out_features, [config.stage_names[0], config.stage_names[2]]) | |
| self.assertEqual(config.out_indices, [0, 2]) | |
| # Error raised when out_indices do not correspond to out_features | |
| with self.assertRaises(ValueError): | |
| config = config_class(out_features=["stage1", "stage2"], out_indices=[0, 2]) | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_channels(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| self.assertEqual(len(model.channels), len(config.out_features)) | |
| num_features = model.num_features | |
| out_indices = [config.stage_names.index(feat) for feat in config.out_features] | |
| out_channels = [num_features[idx] for idx in out_indices] | |
| self.assertListEqual(model.channels, out_channels) | |
| new_config = copy.deepcopy(config) | |
| new_config.out_features = None | |
| model = model_class(new_config) | |
| self.assertEqual(len(model.channels), 1) | |
| self.assertListEqual(model.channels, [num_features[-1]]) | |
| new_config = copy.deepcopy(config) | |
| new_config.out_indices = None | |
| model = model_class(new_config) | |
| self.assertEqual(len(model.channels), 1) | |
| self.assertListEqual(model.channels, [num_features[-1]]) | |
| def test_create_from_modified_config(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(**inputs_dict) | |
| self.assertEqual(len(result.feature_maps), len(config.out_features)) | |
| self.assertEqual(len(model.channels), len(config.out_features)) | |
| self.assertEqual(len(result.feature_maps), len(config.out_indices)) | |
| self.assertEqual(len(model.channels), len(config.out_indices)) | |
| # Check output of last stage is taken if out_features=None, out_indices=None | |
| modified_config = copy.deepcopy(config) | |
| modified_config.out_features = None | |
| model = model_class(modified_config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(**inputs_dict) | |
| self.assertEqual(len(result.feature_maps), 1) | |
| self.assertEqual(len(model.channels), 1) | |
| modified_config = copy.deepcopy(config) | |
| modified_config.out_indices = None | |
| model = model_class(modified_config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(**inputs_dict) | |
| self.assertEqual(len(result.feature_maps), 1) | |
| self.assertEqual(len(model.channels), 1) | |
| # Check backbone can be initialized with fresh weights | |
| modified_config = copy.deepcopy(config) | |
| modified_config.use_pretrained_backbone = False | |
| model = model_class(modified_config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(**inputs_dict) | |
| def test_backbone_common_attributes(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for backbone_class in self.all_model_classes: | |
| backbone = backbone_class(config) | |
| self.assertTrue(hasattr(backbone, "backbone_type")) | |
| self.assertTrue(hasattr(backbone, "stage_names")) | |
| self.assertTrue(hasattr(backbone, "num_features")) | |
| self.assertTrue(hasattr(backbone, "out_indices")) | |
| self.assertTrue(hasattr(backbone, "out_features")) | |
| self.assertTrue(hasattr(backbone, "out_feature_channels")) | |
| self.assertTrue(hasattr(backbone, "channels")) | |
| self.assertIsInstance(backbone.backbone_type, BackboneType) | |
| # Verify num_features has been initialized in the backbone init | |
| self.assertIsNotNone(backbone.num_features) | |
| self.assertTrue(len(backbone.channels) == len(backbone.out_indices)) | |
| self.assertTrue(len(backbone.stage_names) == len(backbone.num_features)) | |
| self.assertTrue(len(backbone.channels) <= len(backbone.num_features)) | |
| self.assertTrue(len(backbone.out_feature_channels) == len(backbone.stage_names)) | |
| def test_backbone_outputs(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| batch_size = inputs_dict["pixel_values"].shape[0] | |
| for backbone_class in self.all_model_classes: | |
| backbone = backbone_class(config) | |
| backbone.to(torch_device) | |
| backbone.eval() | |
| outputs = backbone(**inputs_dict) | |
| # Test default outputs and verify feature maps | |
| self.assertIsInstance(outputs.feature_maps, tuple) | |
| self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) | |
| for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels): | |
| self.assertTrue(feature_map.shape[:2], (batch_size, n_channels)) | |
| self.assertIsNone(outputs.hidden_states) | |
| self.assertIsNone(outputs.attentions) | |
| # Test output_hidden_states=True | |
| outputs = backbone(**inputs_dict, output_hidden_states=True) | |
| self.assertIsNotNone(outputs.hidden_states) | |
| self.assertTrue(len(outputs.hidden_states), len(backbone.stage_names)) | |
| for hidden_state, n_channels in zip(outputs.hidden_states, backbone.channels): | |
| self.assertTrue(hidden_state.shape[:2], (batch_size, n_channels)) | |
| # Test output_attentions=True | |
| if self.has_attentions: | |
| outputs = backbone(**inputs_dict, output_attentions=True) | |
| self.assertIsNotNone(outputs.attentions) | |