Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Team Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a clone of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import importlib.metadata | |
| import tempfile | |
| import unittest | |
| from packaging import version | |
| from transformers import ( | |
| AutoModel, | |
| AutoModelForCausalLM, | |
| AutoModelForSeq2SeqLM, | |
| AutoModelForSequenceClassification, | |
| AutoTokenizer, | |
| BitsAndBytesConfig, | |
| pipeline, | |
| ) | |
| from transformers.testing_utils import ( | |
| is_torch_available, | |
| require_accelerate, | |
| require_bitsandbytes, | |
| require_torch, | |
| require_torch_gpu, | |
| require_torch_multi_gpu, | |
| slow, | |
| ) | |
| def get_some_linear_layer(model): | |
| if model.config.model_type == "gpt2": | |
| return model.transformer.h[0].mlp.c_fc | |
| return model.transformer.h[0].mlp.dense_4h_to_h | |
| if is_torch_available(): | |
| import torch | |
| import torch.nn as nn | |
| class LoRALayer(nn.Module): | |
| """Wraps a linear layer with LoRA-like adapter - Used for testing purposes only""" | |
| def __init__(self, module: nn.Module, rank: int): | |
| super().__init__() | |
| self.module = module | |
| self.adapter = nn.Sequential( | |
| nn.Linear(module.in_features, rank, bias=False), | |
| nn.Linear(rank, module.out_features, bias=False), | |
| ) | |
| small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5 | |
| nn.init.normal_(self.adapter[0].weight, std=small_std) | |
| nn.init.zeros_(self.adapter[1].weight) | |
| self.adapter.to(module.weight.device) | |
| def forward(self, input, *args, **kwargs): | |
| return self.module(input, *args, **kwargs) + self.adapter(input) | |
| class Base4bitTest(unittest.TestCase): | |
| # We keep the constants inside the init function and model loading inside setUp function | |
| # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) | |
| # Therefore here we use only bloom-1b3 to test our module | |
| model_name = "bigscience/bloom-1b7" | |
| # Constant values | |
| EXPECTED_RELATIVE_DIFFERENCE = ( | |
| 2.109659552692574 # This was obtained on a RTX Titan so the number might slightly change | |
| ) | |
| input_text = "Hello my name is" | |
| EXPECTED_OUTPUTS = set() | |
| EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I") | |
| EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n") | |
| EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University") | |
| MAX_NEW_TOKENS = 10 | |
| def setUp(self): | |
| # Models and tokenizer | |
| self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) | |
| class Bnb4BitTest(Base4bitTest): | |
| def setUp(self): | |
| super().setUp() | |
| # Models and tokenizer | |
| self.model_fp16 = AutoModelForCausalLM.from_pretrained( | |
| self.model_name, torch_dtype=torch.float16, device_map="auto" | |
| ) | |
| self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") | |
| def tearDown(self): | |
| r""" | |
| TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to | |
| avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 | |
| """ | |
| del self.model_fp16 | |
| del self.model_4bit | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_quantization_num_parameters(self): | |
| r""" | |
| Test if the number of returned parameters is correct | |
| See: https://github.com/huggingface/transformers/issues/25978 | |
| """ | |
| num_params_4bit = self.model_4bit.num_parameters() | |
| num_params_fp16 = self.model_fp16.num_parameters() | |
| self.assertEqual(num_params_4bit, num_params_fp16) | |
| def test_quantization_config_json_serialization(self): | |
| r""" | |
| A simple test to check if the quantization config is correctly serialized and deserialized | |
| """ | |
| config = self.model_4bit.config | |
| self.assertTrue(hasattr(config, "quantization_config")) | |
| _ = config.to_dict() | |
| _ = config.to_diff_dict() | |
| _ = config.to_json_string() | |
| def test_memory_footprint(self): | |
| r""" | |
| A simple test to check if the model conversion has been done correctly by checking on the | |
| memory footprint of the converted model and the class type of the linear layers of the converted models | |
| """ | |
| from bitsandbytes.nn import Params4bit | |
| mem_fp16 = self.model_fp16.get_memory_footprint() | |
| mem_4bit = self.model_4bit.get_memory_footprint() | |
| self.assertAlmostEqual(mem_fp16 / mem_4bit, self.EXPECTED_RELATIVE_DIFFERENCE) | |
| linear = get_some_linear_layer(self.model_4bit) | |
| self.assertTrue(linear.weight.__class__ == Params4bit) | |
| def test_linear_are_4bit(self): | |
| r""" | |
| A simple test to check if the model conversion has been done correctly by checking on the | |
| memory footprint of the converted model and the class type of the linear layers of the converted models | |
| """ | |
| from transformers import T5PreTrainedModel | |
| self.model_fp16.get_memory_footprint() | |
| self.model_4bit.get_memory_footprint() | |
| for name, module in self.model_4bit.named_modules(): | |
| if isinstance(module, torch.nn.Linear): | |
| if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules: | |
| # 4-bit parameters are packed in uint8 variables | |
| self.assertTrue(module.weight.dtype == torch.uint8) | |
| def test_rwkv_4bit(self): | |
| r""" | |
| A simple test to check if 4-bit RWKV inference works as expected. | |
| """ | |
| model_id = "RWKV/rwkv-4-169m-pile" | |
| quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True) | |
| model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config) | |
| tok = AutoTokenizer.from_pretrained(model_id) | |
| text = "Hello my name is" | |
| input_ids = tok.encode(text, return_tensors="pt").to(0) | |
| _ = model.generate(input_ids, max_new_tokens=30) | |
| def test_generate_quality(self): | |
| r""" | |
| Test the generation quality of the quantized model and see that we are matching the expected output. | |
| Given that we are operating on small numbers + the testing model is relatively small, we might not get | |
| the same output across GPUs. So we'll generate few tokens (5-10) and check their output. | |
| """ | |
| encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
| output_sequences = self.model_4bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) | |
| self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) | |
| def test_generate_quality_config(self): | |
| r""" | |
| Test that loading the model with the config is equivalent | |
| """ | |
| bnb_config = BitsAndBytesConfig() | |
| bnb_config.load_in_4bit = True | |
| model_4bit_from_config = AutoModelForCausalLM.from_pretrained( | |
| self.model_name, quantization_config=bnb_config, device_map="auto" | |
| ) | |
| encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
| output_sequences = model_4bit_from_config.generate( | |
| input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10 | |
| ) | |
| self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) | |
| def test_raise_on_save_pretrained(self): | |
| r""" | |
| Test whether trying to save a model after converting it in 8-bit will throw a warning. | |
| """ | |
| with self.assertRaises(NotImplementedError), tempfile.TemporaryDirectory() as tmpdirname: | |
| self.model_4bit.save_pretrained(tmpdirname) | |
| def test_raise_if_config_and_load_in_4bit(self): | |
| r""" | |
| Test that loading the model with the config and `load_in_4bit` raises an error | |
| """ | |
| bnb_config = BitsAndBytesConfig() | |
| with self.assertRaises(ValueError): | |
| _ = AutoModelForCausalLM.from_pretrained( | |
| self.model_name, | |
| quantization_config=bnb_config, | |
| load_in_4bit=True, | |
| device_map="auto", | |
| bnb_4bit_quant_type="nf4", | |
| ) | |
| def test_device_and_dtype_assignment(self): | |
| r""" | |
| Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error. | |
| Checks also if other models are casted correctly. | |
| """ | |
| with self.assertRaises(ValueError): | |
| # Tries with `str` | |
| self.model_4bit.to("cpu") | |
| with self.assertRaises(ValueError): | |
| # Tries with a `dtype`` | |
| self.model_4bit.to(torch.float16) | |
| with self.assertRaises(ValueError): | |
| # Tries with a `device` | |
| self.model_4bit.to(torch.device("cuda:0")) | |
| with self.assertRaises(ValueError): | |
| # Tries with a `device` | |
| self.model_4bit.float() | |
| with self.assertRaises(ValueError): | |
| # Tries with a `device` | |
| self.model_4bit.half() | |
| # Test if we did not break anything | |
| encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
| self.model_fp16 = self.model_fp16.to(torch.float32) | |
| _ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) | |
| # Check this does not throw an error | |
| _ = self.model_fp16.to("cpu") | |
| # Check this does not throw an error | |
| _ = self.model_fp16.half() | |
| # Check this does not throw an error | |
| _ = self.model_fp16.float() | |
| def test_fp32_4bit_conversion(self): | |
| r""" | |
| Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. | |
| """ | |
| model = AutoModelForSeq2SeqLM.from_pretrained("t5-small", load_in_4bit=True, device_map="auto") | |
| self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32) | |
| class Bnb4BitT5Test(unittest.TestCase): | |
| def setUpClass(cls): | |
| cls.model_name = "t5-small" | |
| cls.dense_act_model_name = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense | |
| cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) | |
| cls.input_text = "Translate in German: Hello, my dog is cute" | |
| def tearDown(self): | |
| r""" | |
| TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to | |
| avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 | |
| """ | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_inference_without_keep_in_fp32(self): | |
| r""" | |
| Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. | |
| `flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test | |
| both cases. | |
| """ | |
| from transformers import T5ForConditionalGeneration | |
| modules = T5ForConditionalGeneration._keep_in_fp32_modules | |
| T5ForConditionalGeneration._keep_in_fp32_modules = None | |
| # test with `t5-small` | |
| model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") | |
| encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) | |
| _ = model.generate(**encoded_input) | |
| # test with `flan-t5-small` | |
| model = T5ForConditionalGeneration.from_pretrained( | |
| self.dense_act_model_name, load_in_4bit=True, device_map="auto" | |
| ) | |
| encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) | |
| _ = model.generate(**encoded_input) | |
| T5ForConditionalGeneration._keep_in_fp32_modules = modules | |
| def test_inference_with_keep_in_fp32(self): | |
| r""" | |
| Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. | |
| `flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test | |
| both cases. | |
| """ | |
| import bitsandbytes as bnb | |
| from transformers import T5ForConditionalGeneration | |
| # test with `t5-small` | |
| model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") | |
| # there was a bug with decoders - this test checks that it is fixed | |
| self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear4bit)) | |
| encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) | |
| _ = model.generate(**encoded_input) | |
| # test with `flan-t5-small` | |
| model = T5ForConditionalGeneration.from_pretrained( | |
| self.dense_act_model_name, load_in_4bit=True, device_map="auto" | |
| ) | |
| encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) | |
| _ = model.generate(**encoded_input) | |
| class Classes4BitModelTest(Base4bitTest): | |
| def setUp(self): | |
| super().setUp() | |
| # model_name | |
| self.model_name = "bigscience/bloom-560m" | |
| self.seq_to_seq_name = "t5-small" | |
| # Different types of model | |
| self.base_model = AutoModel.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") | |
| # Sequence classification model | |
| self.sequence_model = AutoModelForSequenceClassification.from_pretrained( | |
| self.model_name, load_in_4bit=True, device_map="auto" | |
| ) | |
| # CausalLM model | |
| self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") | |
| # Seq2seq model | |
| self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained( | |
| self.seq_to_seq_name, load_in_4bit=True, device_map="auto" | |
| ) | |
| def tearDown(self): | |
| r""" | |
| TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to | |
| avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 | |
| """ | |
| del self.base_model | |
| del self.sequence_model | |
| del self.model_4bit | |
| del self.seq_to_seq_model | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_correct_head_class(self): | |
| r""" | |
| A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification) | |
| are kept in their native class. | |
| """ | |
| from bitsandbytes.nn import Params4bit | |
| self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Params4bit) | |
| # Other heads should be nn.Parameter | |
| self.assertTrue(self.model_4bit.lm_head.weight.__class__ == torch.nn.Parameter) | |
| self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) | |
| self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) | |
| class Pipeline4BitTest(Base4bitTest): | |
| def setUp(self): | |
| super().setUp() | |
| def tearDown(self): | |
| r""" | |
| TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to | |
| avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 | |
| """ | |
| del self.pipe | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_pipeline(self): | |
| r""" | |
| The aim of this test is to verify that the mixed 4bit is compatible with `pipeline` from transformers. Since | |
| we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything | |
| on pipline. | |
| """ | |
| # self._clear_cuda_cache() | |
| self.pipe = pipeline( | |
| "text-generation", | |
| model=self.model_name, | |
| model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.float16}, | |
| max_new_tokens=self.MAX_NEW_TOKENS, | |
| ) | |
| # Real second forward pass | |
| pipeline_output = self.pipe(self.input_text) | |
| self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS) | |
| class Bnb4bitTestMultiGpu(Base4bitTest): | |
| def setUp(self): | |
| super().setUp() | |
| def test_multi_gpu_loading(self): | |
| r""" | |
| This tests that the model has been loaded and can be used correctly on a multi-GPU setup. | |
| Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice | |
| """ | |
| model_parallel = AutoModelForCausalLM.from_pretrained( | |
| self.model_name, load_in_4bit=True, device_map="balanced" | |
| ) | |
| # Check correct device map | |
| self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1}) | |
| # Check that inference pass works on the model | |
| encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
| # Second real batch | |
| output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) | |
| self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) | |
| class Bnb4BitTestTraining(Base4bitTest): | |
| def setUp(self): | |
| self.model_name = "facebook/opt-350m" | |
| super().setUp() | |
| def test_training(self): | |
| if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"): | |
| return | |
| # Step 1: freeze all parameters | |
| model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True) | |
| self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()}) | |
| for param in model.parameters(): | |
| param.requires_grad = False # freeze the model - train adapters later | |
| if param.ndim == 1: | |
| # cast the small parameters (e.g. layernorm) to fp32 for stability | |
| param.data = param.data.to(torch.float32) | |
| # Step 2: add adapters | |
| for _, module in model.named_modules(): | |
| if "OPTAttention" in repr(type(module)): | |
| module.q_proj = LoRALayer(module.q_proj, rank=16) | |
| module.k_proj = LoRALayer(module.k_proj, rank=16) | |
| module.v_proj = LoRALayer(module.v_proj, rank=16) | |
| # Step 3: dummy batch | |
| batch = self.tokenizer("Test batch ", return_tensors="pt").to(0) | |
| # Step 4: Check if the gradient is not None | |
| with torch.cuda.amp.autocast(): | |
| out = model.forward(**batch) | |
| out.logits.norm().backward() | |
| for module in model.modules(): | |
| if isinstance(module, LoRALayer): | |
| self.assertTrue(module.adapter[1].weight.grad is not None) | |
| self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) | |
| elif isinstance(module, nn.Embedding): | |
| self.assertTrue(module.weight.grad is None) | |
| class Bnb4BitGPT2Test(Bnb4BitTest): | |
| model_name = "gpt2-xl" | |
| EXPECTED_RELATIVE_DIFFERENCE = 3.3191854854152187 | |