Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch CPMAnt model. """ | |
| import unittest | |
| from transformers.testing_utils import is_torch_available, require_torch, tooslow | |
| from ...generation.test_utils import torch_device | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, ids_tensor | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import ( | |
| CpmAntConfig, | |
| CpmAntForCausalLM, | |
| CpmAntModel, | |
| CpmAntTokenizer, | |
| ) | |
| class CpmAntModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=2, | |
| seq_length=8, | |
| is_training=True, | |
| use_token_type_ids=False, | |
| use_input_mask=False, | |
| use_labels=False, | |
| use_mc_token_ids=False, | |
| vocab_size=99, | |
| hidden_size=32, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| num_buckets=32, | |
| max_distance=128, | |
| prompt_length=8, | |
| prompt_types=8, | |
| segment_types=8, | |
| init_std=1.0, | |
| return_dict=True, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_token_type_ids = use_token_type_ids | |
| self.use_input_mask = use_input_mask | |
| self.use_labels = use_labels | |
| self.use_mc_token_ids = use_mc_token_ids | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.num_buckets = num_buckets | |
| self.max_distance = max_distance | |
| self.prompt_length = prompt_length | |
| self.prompt_types = prompt_types | |
| self.segment_types = segment_types | |
| self.init_std = init_std | |
| self.return_dict = return_dict | |
| def prepare_config_and_inputs(self): | |
| input_ids = {} | |
| input_ids["input_ids"] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).type(torch.int32) | |
| input_ids["use_cache"] = False | |
| config = self.get_config() | |
| return (config, input_ids) | |
| def get_config(self): | |
| return CpmAntConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| dim_ff=self.intermediate_size, | |
| position_bias_num_buckets=self.num_buckets, | |
| position_bias_max_distance=self.max_distance, | |
| prompt_types=self.prompt_types, | |
| prompt_length=self.prompt_length, | |
| segment_types=self.segment_types, | |
| use_cache=True, | |
| init_std=self.init_std, | |
| return_dict=self.return_dict, | |
| ) | |
| def create_and_check_cpmant_model(self, config, input_ids, *args): | |
| model = CpmAntModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| hidden_states = model(**input_ids).last_hidden_state | |
| self.parent.assertEqual(hidden_states.shape, (self.batch_size, self.seq_length, config.hidden_size)) | |
| def create_and_check_lm_head_model(self, config, input_ids, *args): | |
| model = CpmAntForCausalLM(config) | |
| model.to(torch_device) | |
| input_ids["input_ids"] = input_ids["input_ids"].to(torch_device) | |
| model.eval() | |
| model_output = model(**input_ids) | |
| self.parent.assertEqual( | |
| model_output.logits.shape, | |
| (self.batch_size, self.seq_length, config.vocab_size + config.prompt_types * config.prompt_length), | |
| ) | |
| def prepare_config_and_inputs_for_common(self): | |
| config, inputs_dict = self.prepare_config_and_inputs() | |
| return config, inputs_dict | |
| class CpmAntModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = (CpmAntModel, CpmAntForCausalLM) if is_torch_available() else () | |
| pipeline_model_mapping = ( | |
| {"feature-extraction": CpmAntModel, "text-generation": CpmAntForCausalLM} if is_torch_available() else {} | |
| ) | |
| test_pruning = False | |
| test_missing_keys = False | |
| test_mismatched_shapes = False | |
| test_head_masking = False | |
| test_resize_embeddings = False | |
| def setUp(self): | |
| self.model_tester = CpmAntModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=CpmAntConfig) | |
| def test_config(self): | |
| self.config_tester.create_and_test_config_common_properties() | |
| self.config_tester.create_and_test_config_to_json_string() | |
| self.config_tester.create_and_test_config_to_json_file() | |
| self.config_tester.create_and_test_config_from_and_save_pretrained() | |
| self.config_tester.check_config_can_be_init_without_params() | |
| self.config_tester.check_config_arguments_init() | |
| def test_inputs_embeds(self): | |
| unittest.skip("CPMAnt doesn't support input_embeds.")(self.test_inputs_embeds) | |
| def test_retain_grad_hidden_states_attentions(self): | |
| unittest.skip( | |
| "CPMAnt doesn't support retain grad in hidden_states or attentions, because prompt management will peel off the output.hidden_states from graph.\ | |
| So is attentions. We strongly recommand you use loss to tune model." | |
| )(self.test_retain_grad_hidden_states_attentions) | |
| def test_cpmant_model(self): | |
| config, inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_cpmant_model(config, inputs) | |
| def test_cpmant_lm_head_model(self): | |
| config, inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_lm_head_model(config, inputs) | |
| class CpmAntModelIntegrationTest(unittest.TestCase): | |
| def test_inference_masked_lm(self): | |
| texts = "今天天气真好!" | |
| model_path = "openbmb/cpm-ant-10b" | |
| model = CpmAntModel.from_pretrained(model_path) | |
| tokenizer = CpmAntTokenizer.from_pretrained(model_path) | |
| inputs = tokenizer(texts, return_tensors="pt") | |
| hidden_states = model(**inputs).last_hidden_state | |
| expected_slice = torch.tensor( | |
| [[[6.1708, 5.9244, 1.0835], [6.5207, 6.2893, -11.3324], [-1.0107, -0.0576, -5.9577]]], | |
| ) | |
| self.assertTrue(torch.allclose(hidden_states[:, :3, :3], expected_slice, atol=1e-2)) | |
| class CpmAntForCausalLMlIntegrationTest(unittest.TestCase): | |
| def test_inference_casual(self): | |
| texts = "今天天气真好!" | |
| model_path = "openbmb/cpm-ant-10b" | |
| model = CpmAntForCausalLM.from_pretrained(model_path) | |
| tokenizer = CpmAntTokenizer.from_pretrained(model_path) | |
| inputs = tokenizer(texts, return_tensors="pt") | |
| hidden_states = model(**inputs).logits | |
| expected_slice = torch.tensor( | |
| [[[-6.4267, -6.4083, -6.3958], [-5.8802, -5.9447, -5.7811], [-5.3896, -5.4820, -5.4295]]], | |
| ) | |
| self.assertTrue(torch.allclose(hidden_states[:, :3, :3], expected_slice, atol=1e-2)) | |
| def test_simple_generation(self): | |
| model_path = "openbmb/cpm-ant-10b" | |
| model = CpmAntForCausalLM.from_pretrained(model_path) | |
| tokenizer = CpmAntTokenizer.from_pretrained(model_path) | |
| texts = "今天天气不错," | |
| expected_output = "今天天气不错,阳光明媚,我和妈妈一起去超市买东西。\n在超市里,我看到了一个很好玩的玩具,它的名字叫“机器人”。它有一个圆圆的脑袋,两只圆圆的眼睛,还有一个圆圆的" | |
| model_inputs = tokenizer(texts, return_tensors="pt") | |
| token_ids = model.generate(**model_inputs) | |
| output_texts = tokenizer.batch_decode(token_ids) | |
| self.assertEqual(expected_output, output_texts) | |
| def test_batch_generation(self): | |
| model_path = "openbmb/cpm-ant-10b" | |
| model = CpmAntForCausalLM.from_pretrained(model_path) | |
| tokenizer = CpmAntTokenizer.from_pretrained(model_path) | |
| texts = ["今天天气不错,", "新年快乐,万事如意!"] | |
| expected_output = [ | |
| "今天天气不错,阳光明媚,我和妈妈一起去超市买东西。\n在超市里,我看到了一个很好玩的玩具,它的名字叫“机器人”。它有一个圆圆的脑袋,两只圆圆的眼睛,还有一个圆圆的", | |
| "新年快乐,万事如意!在这辞旧迎新的美好时刻,我谨代表《农村新技术》杂志社全体同仁,向一直以来关心、支持《农村新技术》杂志发展的各级领导、各界朋友和广大读者致以最诚挚的", | |
| ] | |
| model_inputs = tokenizer(texts, return_tensors="pt", padding=True) | |
| token_ids = model.generate(**model_inputs) | |
| output_texts = tokenizer.batch_decode(token_ids) | |
| self.assertEqual(expected_output, output_texts) | |