Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Team Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a clone of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| from queue import Empty | |
| from threading import Thread | |
| from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available | |
| from transformers.testing_utils import CaptureStdout, require_torch, torch_device | |
| from ..test_modeling_common import ids_tensor | |
| if is_torch_available(): | |
| import torch | |
| from transformers import AutoModelForCausalLM | |
| class StreamerTester(unittest.TestCase): | |
| def test_text_streamer_matches_non_streaming(self): | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) | |
| model.config.eos_token_id = -1 | |
| input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) | |
| greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False) | |
| greedy_text = tokenizer.decode(greedy_ids[0]) | |
| with CaptureStdout() as cs: | |
| streamer = TextStreamer(tokenizer) | |
| model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer) | |
| # The greedy text should be printed to stdout, except for the final "\n" in the streamer | |
| streamer_text = cs.out[:-1] | |
| self.assertEqual(streamer_text, greedy_text) | |
| def test_iterator_streamer_matches_non_streaming(self): | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) | |
| model.config.eos_token_id = -1 | |
| input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) | |
| greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False) | |
| greedy_text = tokenizer.decode(greedy_ids[0]) | |
| streamer = TextIteratorStreamer(tokenizer) | |
| generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| streamer_text = "" | |
| for new_text in streamer: | |
| streamer_text += new_text | |
| self.assertEqual(streamer_text, greedy_text) | |
| def test_text_streamer_skip_prompt(self): | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) | |
| model.config.eos_token_id = -1 | |
| input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) | |
| greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False) | |
| new_greedy_ids = greedy_ids[:, input_ids.shape[1] :] | |
| new_greedy_text = tokenizer.decode(new_greedy_ids[0]) | |
| with CaptureStdout() as cs: | |
| streamer = TextStreamer(tokenizer, skip_prompt=True) | |
| model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer) | |
| # The greedy text should be printed to stdout, except for the final "\n" in the streamer | |
| streamer_text = cs.out[:-1] | |
| self.assertEqual(streamer_text, new_greedy_text) | |
| def test_text_streamer_decode_kwargs(self): | |
| # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested | |
| # with actual models -- the dummy models' tokenizers are not aligned with their models, and | |
| # `skip_special_tokens=True` has no effect on them | |
| tokenizer = AutoTokenizer.from_pretrained("distilgpt2") | |
| model = AutoModelForCausalLM.from_pretrained("distilgpt2").to(torch_device) | |
| model.config.eos_token_id = -1 | |
| input_ids = torch.ones((1, 5), device=torch_device).long() * model.config.bos_token_id | |
| with CaptureStdout() as cs: | |
| streamer = TextStreamer(tokenizer, skip_special_tokens=True) | |
| model.generate(input_ids, max_new_tokens=1, do_sample=False, streamer=streamer) | |
| # The prompt contains a special token, so the streamer should not print it. As such, the output text, when | |
| # re-tokenized, must only contain one token | |
| streamer_text = cs.out[:-1] # Remove the final "\n" | |
| streamer_text_tokenized = tokenizer(streamer_text, return_tensors="pt") | |
| self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1)) | |
| def test_iterator_streamer_timeout(self): | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
| model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) | |
| model.config.eos_token_id = -1 | |
| input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=0.001) | |
| generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| # The streamer will timeout after 0.001 seconds, so an exception will be raised | |
| with self.assertRaises(Empty): | |
| streamer_text = "" | |
| for new_text in streamer: | |
| streamer_text += new_text | |