Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| from typing import Tuple | |
| from transformers import AddedToken, LukeTokenizer | |
| from transformers.testing_utils import get_tests_dir, require_torch, slow | |
| from ...test_tokenization_common import TokenizerTesterMixin | |
| SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json") | |
| SAMPLE_MERGE_FILE = get_tests_dir("fixtures/merges.txt") | |
| SAMPLE_ENTITY_VOCAB = get_tests_dir("fixtures/test_entity_vocab.json") | |
| class LukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase): | |
| tokenizer_class = LukeTokenizer | |
| test_rust_tokenizer = False | |
| from_pretrained_kwargs = {"cls_token": "<s>"} | |
| def setUp(self): | |
| super().setUp() | |
| self.special_tokens_map = {"entity_token_1": "<ent>", "entity_token_2": "<ent2>"} | |
| def get_tokenizer(self, task=None, **kwargs): | |
| kwargs.update(self.special_tokens_map) | |
| tokenizer = LukeTokenizer( | |
| vocab_file=SAMPLE_VOCAB, | |
| merges_file=SAMPLE_MERGE_FILE, | |
| entity_vocab_file=SAMPLE_ENTITY_VOCAB, | |
| task=task, | |
| **kwargs, | |
| ) | |
| tokenizer.sanitize_special_tokens() | |
| return tokenizer | |
| def get_input_output_texts(self, tokenizer): | |
| input_text = "lower newer" | |
| output_text = "lower newer" | |
| return input_text, output_text | |
| def test_full_tokenizer(self): | |
| tokenizer = self.get_tokenizer() | |
| text = "lower newer" | |
| bpe_tokens = ["l", "o", "w", "er", "Ġ", "n", "e", "w", "er"] | |
| tokens = tokenizer.tokenize(text) # , add_prefix_space=True) | |
| self.assertListEqual(tokens, bpe_tokens) | |
| input_tokens = tokens + [tokenizer.unk_token] | |
| input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] | |
| self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) | |
| def test_sequence_builders(self): | |
| tokenizer = self.tokenizer_class.from_pretrained("studio-ousia/luke-large") | |
| text = tokenizer.encode("sequence builders", add_special_tokens=False) | |
| text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) | |
| encoded_text_from_decode = tokenizer.encode( | |
| "sequence builders", add_special_tokens=True, add_prefix_space=False | |
| ) | |
| encoded_pair_from_decode = tokenizer.encode( | |
| "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False | |
| ) | |
| encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) | |
| encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) | |
| self.assertEqual(encoded_sentence, encoded_text_from_decode) | |
| self.assertEqual(encoded_pair, encoded_pair_from_decode) | |
| def get_clean_sequence(self, tokenizer, max_length=20) -> Tuple[str, list]: | |
| txt = "Beyonce lives in Los Angeles" | |
| ids = tokenizer.encode(txt, add_special_tokens=False) | |
| return txt, ids | |
| def test_space_encoding(self): | |
| tokenizer = self.get_tokenizer() | |
| sequence = "Encode this sequence." | |
| space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]] | |
| # Testing encoder arguments | |
| encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False) | |
| first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] | |
| self.assertNotEqual(first_char, space_encoding) | |
| encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) | |
| first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] | |
| self.assertEqual(first_char, space_encoding) | |
| tokenizer.add_special_tokens({"bos_token": "<s>"}) | |
| encoded = tokenizer.encode(sequence, add_special_tokens=True) | |
| first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0] | |
| self.assertNotEqual(first_char, space_encoding) | |
| # Testing spaces after special tokens | |
| mask = "<mask>" | |
| tokenizer.add_special_tokens( | |
| {"mask_token": AddedToken(mask, lstrip=True, rstrip=False)} | |
| ) # mask token has a left space | |
| mask_ind = tokenizer.convert_tokens_to_ids(mask) | |
| sequence = "Encode <mask> sequence" | |
| sequence_nospace = "Encode <mask>sequence" | |
| encoded = tokenizer.encode(sequence) | |
| mask_loc = encoded.index(mask_ind) | |
| first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] | |
| self.assertEqual(first_char, space_encoding) | |
| encoded = tokenizer.encode(sequence_nospace) | |
| mask_loc = encoded.index(mask_ind) | |
| first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] | |
| self.assertNotEqual(first_char, space_encoding) | |
| def test_pretokenized_inputs(self): | |
| pass | |
| def test_embeded_special_tokens(self): | |
| for tokenizer, pretrained_name, kwargs in self.tokenizers_list: | |
| with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)): | |
| tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) | |
| tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) | |
| sentence = "A, <mask> AllenNLP sentence." | |
| tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) | |
| tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) | |
| # token_type_ids should put 0 everywhere | |
| self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) | |
| # token_type_ids should put 0 everywhere | |
| self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) | |
| # attention_mask should put 1 everywhere, so sum over length should be 1 | |
| self.assertEqual( | |
| sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), | |
| ) | |
| tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) | |
| # Rust correctly handles the space before the mask while python doesnt | |
| self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) | |
| self.assertSequenceEqual( | |
| tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] | |
| ) | |
| def test_padding_entity_inputs(self): | |
| tokenizer = self.get_tokenizer() | |
| sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." | |
| span = (15, 34) | |
| pad_id = tokenizer.entity_vocab["[PAD]"] | |
| mask_id = tokenizer.entity_vocab["[MASK]"] | |
| encoding = tokenizer([sentence, sentence], entity_spans=[[span], [span, span]], padding=True) | |
| self.assertEqual(encoding["entity_ids"], [[mask_id, pad_id], [mask_id, mask_id]]) | |
| # test with a sentence with no entity | |
| encoding = tokenizer([sentence, sentence], entity_spans=[[], [span, span]], padding=True) | |
| self.assertEqual(encoding["entity_ids"], [[pad_id, pad_id], [mask_id, mask_id]]) | |
| def test_if_tokenize_single_text_raise_error_with_invalid_inputs(self): | |
| tokenizer = self.get_tokenizer() | |
| sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." | |
| spans = [(15, 34)] | |
| entities = ["East Asian language"] | |
| with self.assertRaises(ValueError): | |
| tokenizer(sentence, entities=tuple(entities), entity_spans=spans) | |
| with self.assertRaises(ValueError): | |
| tokenizer(sentence, entities=entities, entity_spans=tuple(spans)) | |
| with self.assertRaises(ValueError): | |
| tokenizer(sentence, entities=[0], entity_spans=spans) | |
| with self.assertRaises(ValueError): | |
| tokenizer(sentence, entities=entities, entity_spans=[0]) | |
| with self.assertRaises(ValueError): | |
| tokenizer(sentence, entities=entities, entity_spans=spans + [(0, 9)]) | |
| def test_if_tokenize_entity_classification_raise_error_with_invalid_inputs(self): | |
| tokenizer = self.get_tokenizer(task="entity_classification") | |
| sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." | |
| span = (15, 34) | |
| with self.assertRaises(ValueError): | |
| tokenizer(sentence, entity_spans=[]) | |
| with self.assertRaises(ValueError): | |
| tokenizer(sentence, entity_spans=[span, span]) | |
| with self.assertRaises(ValueError): | |
| tokenizer(sentence, entity_spans=[0]) | |
| def test_if_tokenize_entity_pair_classification_raise_error_with_invalid_inputs(self): | |
| tokenizer = self.get_tokenizer(task="entity_pair_classification") | |
| sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." | |
| # head and tail information | |
| with self.assertRaises(ValueError): | |
| tokenizer(sentence, entity_spans=[]) | |
| with self.assertRaises(ValueError): | |
| tokenizer(sentence, entity_spans=[0, 0]) | |
| def test_if_tokenize_entity_span_classification_raise_error_with_invalid_inputs(self): | |
| tokenizer = self.get_tokenizer(task="entity_span_classification") | |
| sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." | |
| with self.assertRaises(ValueError): | |
| tokenizer(sentence, entity_spans=[]) | |
| with self.assertRaises(ValueError): | |
| tokenizer(sentence, entity_spans=[0, 0, 0]) | |
| class LukeTokenizerIntegrationTests(unittest.TestCase): | |
| tokenizer_class = LukeTokenizer | |
| from_pretrained_kwargs = {"cls_token": "<s>"} | |
| def setUp(self): | |
| super().setUp() | |
| def test_single_text_no_padding_or_truncation(self): | |
| tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) | |
| sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." | |
| entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"] | |
| spans = [(9, 21), (30, 38), (39, 42)] | |
| encoding = tokenizer(sentence, entities=entities, entity_spans=spans, return_token_type_ids=True) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), | |
| "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" | |
| ) | |
| self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she") | |
| self.assertEqual( | |
| encoding["entity_ids"], | |
| [ | |
| tokenizer.entity_vocab["Ana Ivanovic"], | |
| tokenizer.entity_vocab["Thursday"], | |
| tokenizer.entity_vocab["[UNK]"], | |
| ], | |
| ) | |
| self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) | |
| self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) | |
| # fmt: off | |
| self.assertEqual( | |
| encoding["entity_position_ids"], | |
| [ | |
| [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| ] | |
| ) | |
| # fmt: on | |
| def test_single_text_only_entity_spans_no_padding_or_truncation(self): | |
| tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) | |
| sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." | |
| spans = [(9, 21), (30, 38), (39, 42)] | |
| encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), | |
| "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" | |
| ) | |
| self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she") | |
| mask_id = tokenizer.entity_vocab["[MASK]"] | |
| self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id]) | |
| self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) | |
| self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) | |
| # fmt: off | |
| self.assertEqual( | |
| encoding["entity_position_ids"], | |
| [ | |
| [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ], | |
| [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ] | |
| ] | |
| ) | |
| # fmt: on | |
| def test_single_text_padding_pytorch_tensors(self): | |
| tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) | |
| sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." | |
| entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"] | |
| spans = [(9, 21), (30, 38), (39, 42)] | |
| encoding = tokenizer( | |
| sentence, | |
| entities=entities, | |
| entity_spans=spans, | |
| return_token_type_ids=True, | |
| padding="max_length", | |
| max_length=30, | |
| max_entity_length=16, | |
| return_tensors="pt", | |
| ) | |
| # test words | |
| self.assertEqual(encoding["input_ids"].shape, (1, 30)) | |
| self.assertEqual(encoding["attention_mask"].shape, (1, 30)) | |
| self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) | |
| # test entities | |
| self.assertEqual(encoding["entity_ids"].shape, (1, 16)) | |
| self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) | |
| self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) | |
| self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) | |
| def test_text_pair_no_padding_or_truncation(self): | |
| tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) | |
| sentence = "Top seed Ana Ivanovic said on Thursday" | |
| sentence_pair = "She could hardly believe her luck." | |
| entities = ["Ana Ivanovic", "Thursday"] | |
| entities_pair = ["Dummy Entity"] | |
| spans = [(9, 21), (30, 38)] | |
| spans_pair = [(0, 3)] | |
| encoding = tokenizer( | |
| sentence, | |
| sentence_pair, | |
| entities=entities, | |
| entities_pair=entities_pair, | |
| entity_spans=spans, | |
| entity_spans_pair=spans_pair, | |
| return_token_type_ids=True, | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), | |
| "<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>", | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" | |
| ) | |
| self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She") | |
| self.assertEqual( | |
| encoding["entity_ids"], | |
| [ | |
| tokenizer.entity_vocab["Ana Ivanovic"], | |
| tokenizer.entity_vocab["Thursday"], | |
| tokenizer.entity_vocab["[UNK]"], | |
| ], | |
| ) | |
| self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) | |
| self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) | |
| # fmt: off | |
| self.assertEqual( | |
| encoding["entity_position_ids"], | |
| [ | |
| [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| [11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| ] | |
| ) | |
| # fmt: on | |
| def test_text_pair_only_entity_spans_no_padding_or_truncation(self): | |
| tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) | |
| sentence = "Top seed Ana Ivanovic said on Thursday" | |
| sentence_pair = "She could hardly believe her luck." | |
| spans = [(9, 21), (30, 38)] | |
| spans_pair = [(0, 3)] | |
| encoding = tokenizer( | |
| sentence, | |
| sentence_pair, | |
| entity_spans=spans, | |
| entity_spans_pair=spans_pair, | |
| return_token_type_ids=True, | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), | |
| "<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>", | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" | |
| ) | |
| self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She") | |
| mask_id = tokenizer.entity_vocab["[MASK]"] | |
| self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id]) | |
| self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) | |
| self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) | |
| # fmt: off | |
| self.assertEqual( | |
| encoding["entity_position_ids"], | |
| [ | |
| [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| [11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| ] | |
| ) | |
| # fmt: on | |
| def test_text_pair_padding_pytorch_tensors(self): | |
| tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) | |
| sentence = "Top seed Ana Ivanovic said on Thursday" | |
| sentence_pair = "She could hardly believe her luck." | |
| entities = ["Ana Ivanovic", "Thursday"] | |
| entities_pair = ["Dummy Entity"] | |
| spans = [(9, 21), (30, 38)] | |
| spans_pair = [(0, 3)] | |
| encoding = tokenizer( | |
| sentence, | |
| sentence_pair, | |
| entities=entities, | |
| entities_pair=entities_pair, | |
| entity_spans=spans, | |
| entity_spans_pair=spans_pair, | |
| return_token_type_ids=True, | |
| padding="max_length", | |
| max_length=30, | |
| max_entity_length=16, | |
| return_tensors="pt", | |
| ) | |
| # test words | |
| self.assertEqual(encoding["input_ids"].shape, (1, 30)) | |
| self.assertEqual(encoding["attention_mask"].shape, (1, 30)) | |
| self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) | |
| # test entities | |
| self.assertEqual(encoding["entity_ids"].shape, (1, 16)) | |
| self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) | |
| self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) | |
| self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) | |
| def test_entity_classification_no_padding_or_truncation(self): | |
| tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", task="entity_classification") | |
| sentence = ( | |
| "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" | |
| " the new world number one avoid a humiliating second- round exit at Wimbledon ." | |
| ) | |
| span = (39, 42) | |
| encoding = tokenizer(sentence, entity_spans=[span], return_token_type_ids=True) | |
| # test words | |
| self.assertEqual(len(encoding["input_ids"]), 42) | |
| self.assertEqual(len(encoding["attention_mask"]), 42) | |
| self.assertEqual(len(encoding["token_type_ids"]), 42) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), | |
| "<s>Top seed Ana Ivanovic said on Thursday<ent> she<ent> could hardly believe her luck as a fortuitous" | |
| " netcord helped the new world number one avoid a humiliating second- round exit at Wimbledon.</s>", | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"][9:12], spaces_between_special_tokens=False), "<ent> she<ent>" | |
| ) | |
| # test entities | |
| self.assertEqual(encoding["entity_ids"], [2]) | |
| self.assertEqual(encoding["entity_attention_mask"], [1]) | |
| self.assertEqual(encoding["entity_token_type_ids"], [0]) | |
| # fmt: off | |
| self.assertEqual( | |
| encoding["entity_position_ids"], | |
| [ | |
| [9, 10, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] | |
| ] | |
| ) | |
| # fmt: on | |
| def test_entity_classification_padding_pytorch_tensors(self): | |
| tokenizer = LukeTokenizer.from_pretrained( | |
| "studio-ousia/luke-base", task="entity_classification", return_token_type_ids=True | |
| ) | |
| sentence = ( | |
| "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" | |
| " the new world number one avoid a humiliating second- round exit at Wimbledon ." | |
| ) | |
| # entity information | |
| span = (39, 42) | |
| encoding = tokenizer( | |
| sentence, entity_spans=[span], return_token_type_ids=True, padding="max_length", return_tensors="pt" | |
| ) | |
| # test words | |
| self.assertEqual(encoding["input_ids"].shape, (1, 512)) | |
| self.assertEqual(encoding["attention_mask"].shape, (1, 512)) | |
| self.assertEqual(encoding["token_type_ids"].shape, (1, 512)) | |
| # test entities | |
| self.assertEqual(encoding["entity_ids"].shape, (1, 1)) | |
| self.assertEqual(encoding["entity_attention_mask"].shape, (1, 1)) | |
| self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 1)) | |
| self.assertEqual( | |
| encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length) | |
| ) | |
| def test_entity_pair_classification_no_padding_or_truncation(self): | |
| tokenizer = LukeTokenizer.from_pretrained( | |
| "studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True | |
| ) | |
| sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." | |
| # head and tail information | |
| spans = [(9, 21), (39, 42)] | |
| encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), | |
| "<s>Top seed<ent> Ana Ivanovic<ent> said on Thursday<ent2> she<ent2> could hardly believe her luck.</s>", | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"][3:8], spaces_between_special_tokens=False), | |
| "<ent> Ana Ivanovic<ent>", | |
| ) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"][11:14], spaces_between_special_tokens=False), "<ent2> she<ent2>" | |
| ) | |
| self.assertEqual(encoding["entity_ids"], [2, 3]) | |
| self.assertEqual(encoding["entity_attention_mask"], [1, 1]) | |
| self.assertEqual(encoding["entity_token_type_ids"], [0, 0]) | |
| # fmt: off | |
| self.assertEqual( | |
| encoding["entity_position_ids"], | |
| [ | |
| [3, 4, 5, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| [11, 12, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| ] | |
| ) | |
| # fmt: on | |
| def test_entity_pair_classification_padding_pytorch_tensors(self): | |
| tokenizer = LukeTokenizer.from_pretrained( | |
| "studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True | |
| ) | |
| sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." | |
| # head and tail information | |
| spans = [(9, 21), (39, 42)] | |
| encoding = tokenizer( | |
| sentence, | |
| entity_spans=spans, | |
| return_token_type_ids=True, | |
| padding="max_length", | |
| max_length=30, | |
| return_tensors="pt", | |
| ) | |
| # test words | |
| self.assertEqual(encoding["input_ids"].shape, (1, 30)) | |
| self.assertEqual(encoding["attention_mask"].shape, (1, 30)) | |
| self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) | |
| # test entities | |
| self.assertEqual(encoding["entity_ids"].shape, (1, 2)) | |
| self.assertEqual(encoding["entity_attention_mask"].shape, (1, 2)) | |
| self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 2)) | |
| self.assertEqual( | |
| encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length) | |
| ) | |
| def test_entity_span_classification_no_padding_or_truncation(self): | |
| tokenizer = LukeTokenizer.from_pretrained( | |
| "studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True | |
| ) | |
| sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." | |
| spans = [(0, 8), (9, 21), (39, 42)] | |
| encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) | |
| self.assertEqual( | |
| tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), | |
| "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", | |
| ) | |
| self.assertEqual(encoding["entity_ids"], [2, 2, 2]) | |
| self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) | |
| self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) | |
| # fmt: off | |
| self.assertEqual( | |
| encoding["entity_position_ids"], | |
| [ | |
| [1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], | |
| ] | |
| ) | |
| # fmt: on | |
| self.assertEqual(encoding["entity_start_positions"], [1, 3, 9]) | |
| self.assertEqual(encoding["entity_end_positions"], [2, 5, 9]) | |
| def test_entity_span_classification_padding_pytorch_tensors(self): | |
| tokenizer = LukeTokenizer.from_pretrained( | |
| "studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True | |
| ) | |
| sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." | |
| spans = [(0, 8), (9, 21), (39, 42)] | |
| encoding = tokenizer( | |
| sentence, | |
| entity_spans=spans, | |
| return_token_type_ids=True, | |
| padding="max_length", | |
| max_length=30, | |
| max_entity_length=16, | |
| return_tensors="pt", | |
| ) | |
| # test words | |
| self.assertEqual(encoding["input_ids"].shape, (1, 30)) | |
| self.assertEqual(encoding["attention_mask"].shape, (1, 30)) | |
| self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) | |
| # test entities | |
| self.assertEqual(encoding["entity_ids"].shape, (1, 16)) | |
| self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) | |
| self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) | |
| self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) | |
| self.assertEqual(encoding["entity_start_positions"].shape, (1, 16)) | |
| self.assertEqual(encoding["entity_end_positions"].shape, (1, 16)) | |