Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch LUKE model. """ | |
| import unittest | |
| from transformers import LukeConfig, is_torch_available | |
| from transformers.testing_utils import require_torch, slow, torch_device | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import ( | |
| LukeForEntityClassification, | |
| LukeForEntityPairClassification, | |
| LukeForEntitySpanClassification, | |
| LukeForMaskedLM, | |
| LukeForMultipleChoice, | |
| LukeForQuestionAnswering, | |
| LukeForSequenceClassification, | |
| LukeForTokenClassification, | |
| LukeModel, | |
| LukeTokenizer, | |
| ) | |
| from transformers.models.luke.modeling_luke import LUKE_PRETRAINED_MODEL_ARCHIVE_LIST | |
| class LukeModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| seq_length=7, | |
| is_training=True, | |
| entity_length=3, | |
| mention_length=5, | |
| use_attention_mask=True, | |
| use_token_type_ids=True, | |
| use_entity_ids=True, | |
| use_entity_attention_mask=True, | |
| use_entity_token_type_ids=True, | |
| use_entity_position_ids=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| entity_vocab_size=10, | |
| entity_emb_size=6, | |
| hidden_size=32, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| num_labels=3, | |
| num_choices=4, | |
| num_entity_classification_labels=9, | |
| num_entity_pair_classification_labels=6, | |
| num_entity_span_classification_labels=4, | |
| use_entity_aware_attention=True, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.entity_length = entity_length | |
| self.mention_length = mention_length | |
| self.use_attention_mask = use_attention_mask | |
| self.use_token_type_ids = use_token_type_ids | |
| self.use_entity_ids = use_entity_ids | |
| self.use_entity_attention_mask = use_entity_attention_mask | |
| self.use_entity_token_type_ids = use_entity_token_type_ids | |
| self.use_entity_position_ids = use_entity_position_ids | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.entity_vocab_size = entity_vocab_size | |
| self.entity_emb_size = entity_emb_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.num_labels = num_labels | |
| self.num_choices = num_choices | |
| self.num_entity_classification_labels = num_entity_classification_labels | |
| self.num_entity_pair_classification_labels = num_entity_pair_classification_labels | |
| self.num_entity_span_classification_labels = num_entity_span_classification_labels | |
| self.scope = scope | |
| self.use_entity_aware_attention = use_entity_aware_attention | |
| self.encoder_seq_length = seq_length | |
| self.key_length = seq_length | |
| self.num_hidden_states_types = 2 # hidden_states and entity_hidden_states | |
| def prepare_config_and_inputs(self): | |
| # prepare words | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| attention_mask = None | |
| if self.use_attention_mask: | |
| attention_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| token_type_ids = None | |
| if self.use_token_type_ids: | |
| token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
| # prepare entities | |
| entity_ids = ids_tensor([self.batch_size, self.entity_length], self.entity_vocab_size) | |
| entity_attention_mask = None | |
| if self.use_entity_attention_mask: | |
| entity_attention_mask = random_attention_mask([self.batch_size, self.entity_length]) | |
| entity_token_type_ids = None | |
| if self.use_token_type_ids: | |
| entity_token_type_ids = ids_tensor([self.batch_size, self.entity_length], self.type_vocab_size) | |
| entity_position_ids = None | |
| if self.use_entity_position_ids: | |
| entity_position_ids = ids_tensor( | |
| [self.batch_size, self.entity_length, self.mention_length], self.mention_length | |
| ) | |
| sequence_labels = None | |
| token_labels = None | |
| choice_labels = None | |
| entity_labels = None | |
| entity_classification_labels = None | |
| entity_pair_classification_labels = None | |
| entity_span_classification_labels = None | |
| if self.use_labels: | |
| sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
| choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
| entity_labels = ids_tensor([self.batch_size, self.entity_length], self.entity_vocab_size) | |
| entity_classification_labels = ids_tensor([self.batch_size], self.num_entity_classification_labels) | |
| entity_pair_classification_labels = ids_tensor( | |
| [self.batch_size], self.num_entity_pair_classification_labels | |
| ) | |
| entity_span_classification_labels = ids_tensor( | |
| [self.batch_size, self.entity_length], self.num_entity_span_classification_labels | |
| ) | |
| config = self.get_config() | |
| return ( | |
| config, | |
| input_ids, | |
| attention_mask, | |
| token_type_ids, | |
| entity_ids, | |
| entity_attention_mask, | |
| entity_token_type_ids, | |
| entity_position_ids, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| entity_labels, | |
| entity_classification_labels, | |
| entity_pair_classification_labels, | |
| entity_span_classification_labels, | |
| ) | |
| def get_config(self): | |
| return LukeConfig( | |
| vocab_size=self.vocab_size, | |
| entity_vocab_size=self.entity_vocab_size, | |
| entity_emb_size=self.entity_emb_size, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| is_decoder=False, | |
| initializer_range=self.initializer_range, | |
| use_entity_aware_attention=self.use_entity_aware_attention, | |
| ) | |
| def create_and_check_model( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| token_type_ids, | |
| entity_ids, | |
| entity_attention_mask, | |
| entity_token_type_ids, | |
| entity_position_ids, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| entity_labels, | |
| entity_classification_labels, | |
| entity_pair_classification_labels, | |
| entity_span_classification_labels, | |
| ): | |
| model = LukeModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| # test with words + entities | |
| result = model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| entity_ids=entity_ids, | |
| entity_attention_mask=entity_attention_mask, | |
| entity_token_type_ids=entity_token_type_ids, | |
| entity_position_ids=entity_position_ids, | |
| ) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual( | |
| result.entity_last_hidden_state.shape, (self.batch_size, self.entity_length, self.hidden_size) | |
| ) | |
| # test with words only | |
| result = model(input_ids, token_type_ids=token_type_ids) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| def create_and_check_for_masked_lm( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| token_type_ids, | |
| entity_ids, | |
| entity_attention_mask, | |
| entity_token_type_ids, | |
| entity_position_ids, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| entity_labels, | |
| entity_classification_labels, | |
| entity_pair_classification_labels, | |
| entity_span_classification_labels, | |
| ): | |
| config.num_labels = self.num_entity_classification_labels | |
| model = LukeForMaskedLM(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| entity_ids=entity_ids, | |
| entity_attention_mask=entity_attention_mask, | |
| entity_token_type_ids=entity_token_type_ids, | |
| entity_position_ids=entity_position_ids, | |
| labels=token_labels, | |
| entity_labels=entity_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
| if entity_ids is not None: | |
| self.parent.assertEqual( | |
| result.entity_logits.shape, (self.batch_size, self.entity_length, self.entity_vocab_size) | |
| ) | |
| else: | |
| self.parent.assertIsNone(result.entity_logits) | |
| def create_and_check_for_entity_classification( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| token_type_ids, | |
| entity_ids, | |
| entity_attention_mask, | |
| entity_token_type_ids, | |
| entity_position_ids, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| entity_labels, | |
| entity_classification_labels, | |
| entity_pair_classification_labels, | |
| entity_span_classification_labels, | |
| ): | |
| config.num_labels = self.num_entity_classification_labels | |
| model = LukeForEntityClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| entity_ids=entity_ids, | |
| entity_attention_mask=entity_attention_mask, | |
| entity_token_type_ids=entity_token_type_ids, | |
| entity_position_ids=entity_position_ids, | |
| labels=entity_classification_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_entity_classification_labels)) | |
| def create_and_check_for_entity_pair_classification( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| token_type_ids, | |
| entity_ids, | |
| entity_attention_mask, | |
| entity_token_type_ids, | |
| entity_position_ids, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| entity_labels, | |
| entity_classification_labels, | |
| entity_pair_classification_labels, | |
| entity_span_classification_labels, | |
| ): | |
| config.num_labels = self.num_entity_pair_classification_labels | |
| model = LukeForEntityClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| entity_ids=entity_ids, | |
| entity_attention_mask=entity_attention_mask, | |
| entity_token_type_ids=entity_token_type_ids, | |
| entity_position_ids=entity_position_ids, | |
| labels=entity_pair_classification_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_entity_pair_classification_labels)) | |
| def create_and_check_for_entity_span_classification( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| token_type_ids, | |
| entity_ids, | |
| entity_attention_mask, | |
| entity_token_type_ids, | |
| entity_position_ids, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| entity_labels, | |
| entity_classification_labels, | |
| entity_pair_classification_labels, | |
| entity_span_classification_labels, | |
| ): | |
| config.num_labels = self.num_entity_span_classification_labels | |
| model = LukeForEntitySpanClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| entity_start_positions = ids_tensor([self.batch_size, self.entity_length], self.seq_length) | |
| entity_end_positions = ids_tensor([self.batch_size, self.entity_length], self.seq_length) | |
| result = model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| entity_ids=entity_ids, | |
| entity_attention_mask=entity_attention_mask, | |
| entity_token_type_ids=entity_token_type_ids, | |
| entity_position_ids=entity_position_ids, | |
| entity_start_positions=entity_start_positions, | |
| entity_end_positions=entity_end_positions, | |
| labels=entity_span_classification_labels, | |
| ) | |
| self.parent.assertEqual( | |
| result.logits.shape, (self.batch_size, self.entity_length, self.num_entity_span_classification_labels) | |
| ) | |
| def create_and_check_for_question_answering( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| token_type_ids, | |
| entity_ids, | |
| entity_attention_mask, | |
| entity_token_type_ids, | |
| entity_position_ids, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| entity_labels, | |
| entity_classification_labels, | |
| entity_pair_classification_labels, | |
| entity_span_classification_labels, | |
| ): | |
| model = LukeForQuestionAnswering(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| entity_ids=entity_ids, | |
| entity_attention_mask=entity_attention_mask, | |
| entity_token_type_ids=entity_token_type_ids, | |
| entity_position_ids=entity_position_ids, | |
| start_positions=sequence_labels, | |
| end_positions=sequence_labels, | |
| ) | |
| self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
| self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
| def create_and_check_for_sequence_classification( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| token_type_ids, | |
| entity_ids, | |
| entity_attention_mask, | |
| entity_token_type_ids, | |
| entity_position_ids, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| entity_labels, | |
| entity_classification_labels, | |
| entity_pair_classification_labels, | |
| entity_span_classification_labels, | |
| ): | |
| config.num_labels = self.num_labels | |
| model = LukeForSequenceClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| entity_ids=entity_ids, | |
| entity_attention_mask=entity_attention_mask, | |
| entity_token_type_ids=entity_token_type_ids, | |
| entity_position_ids=entity_position_ids, | |
| labels=sequence_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
| def create_and_check_for_token_classification( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| token_type_ids, | |
| entity_ids, | |
| entity_attention_mask, | |
| entity_token_type_ids, | |
| entity_position_ids, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| entity_labels, | |
| entity_classification_labels, | |
| entity_pair_classification_labels, | |
| entity_span_classification_labels, | |
| ): | |
| config.num_labels = self.num_labels | |
| model = LukeForTokenClassification(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| entity_ids=entity_ids, | |
| entity_attention_mask=entity_attention_mask, | |
| entity_token_type_ids=entity_token_type_ids, | |
| entity_position_ids=entity_position_ids, | |
| labels=token_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
| def create_and_check_for_multiple_choice( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| token_type_ids, | |
| entity_ids, | |
| entity_attention_mask, | |
| entity_token_type_ids, | |
| entity_position_ids, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| entity_labels, | |
| entity_classification_labels, | |
| entity_pair_classification_labels, | |
| entity_span_classification_labels, | |
| ): | |
| config.num_choices = self.num_choices | |
| model = LukeForMultipleChoice(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
| multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
| multiple_choice_attention_mask = attention_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
| multiple_choice_entity_ids = entity_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
| multiple_choice_entity_token_type_ids = ( | |
| entity_token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
| ) | |
| multiple_choice_entity_attention_mask = ( | |
| entity_attention_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
| ) | |
| multiple_choice_entity_position_ids = ( | |
| entity_position_ids.unsqueeze(1).expand(-1, self.num_choices, -1, -1).contiguous() | |
| ) | |
| result = model( | |
| multiple_choice_inputs_ids, | |
| attention_mask=multiple_choice_attention_mask, | |
| token_type_ids=multiple_choice_token_type_ids, | |
| entity_ids=multiple_choice_entity_ids, | |
| entity_attention_mask=multiple_choice_entity_attention_mask, | |
| entity_token_type_ids=multiple_choice_entity_token_type_ids, | |
| entity_position_ids=multiple_choice_entity_position_ids, | |
| labels=choice_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| attention_mask, | |
| token_type_ids, | |
| entity_ids, | |
| entity_attention_mask, | |
| entity_token_type_ids, | |
| entity_position_ids, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| entity_labels, | |
| entity_classification_labels, | |
| entity_pair_classification_labels, | |
| entity_span_classification_labels, | |
| ) = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "token_type_ids": token_type_ids, | |
| "attention_mask": attention_mask, | |
| "entity_ids": entity_ids, | |
| "entity_token_type_ids": entity_token_type_ids, | |
| "entity_attention_mask": entity_attention_mask, | |
| "entity_position_ids": entity_position_ids, | |
| } | |
| return config, inputs_dict | |
| class LukeModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = ( | |
| ( | |
| LukeModel, | |
| LukeForMaskedLM, | |
| LukeForEntityClassification, | |
| LukeForEntityPairClassification, | |
| LukeForEntitySpanClassification, | |
| LukeForQuestionAnswering, | |
| LukeForSequenceClassification, | |
| LukeForTokenClassification, | |
| LukeForMultipleChoice, | |
| ) | |
| if is_torch_available() | |
| else () | |
| ) | |
| pipeline_model_mapping = ( | |
| { | |
| "feature-extraction": LukeModel, | |
| "fill-mask": LukeForMaskedLM, | |
| "question-answering": LukeForQuestionAnswering, | |
| "text-classification": LukeForSequenceClassification, | |
| "token-classification": LukeForTokenClassification, | |
| "zero-shot": LukeForSequenceClassification, | |
| } | |
| if is_torch_available() | |
| else {} | |
| ) | |
| test_pruning = False | |
| test_torchscript = False | |
| test_resize_embeddings = True | |
| test_head_masking = True | |
| # TODO: Fix the failed tests | |
| def is_pipeline_test_to_skip( | |
| self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
| ): | |
| if pipeline_test_casse_name in ["QAPipelineTests", "ZeroShotClassificationPipelineTests"]: | |
| return True | |
| return False | |
| def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
| entity_inputs_dict = {k: v for k, v in inputs_dict.items() if k.startswith("entity")} | |
| inputs_dict = {k: v for k, v in inputs_dict.items() if not k.startswith("entity")} | |
| inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
| if model_class == LukeForMultipleChoice: | |
| entity_inputs_dict = { | |
| k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() | |
| if v.ndim == 2 | |
| else v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1, -1).contiguous() | |
| for k, v in entity_inputs_dict.items() | |
| } | |
| inputs_dict.update(entity_inputs_dict) | |
| if model_class == LukeForEntitySpanClassification: | |
| inputs_dict["entity_start_positions"] = torch.zeros( | |
| (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device | |
| ) | |
| inputs_dict["entity_end_positions"] = torch.ones( | |
| (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device | |
| ) | |
| if return_labels: | |
| if model_class in ( | |
| LukeForEntityClassification, | |
| LukeForEntityPairClassification, | |
| LukeForSequenceClassification, | |
| LukeForMultipleChoice, | |
| ): | |
| inputs_dict["labels"] = torch.zeros( | |
| self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
| ) | |
| elif model_class == LukeForEntitySpanClassification: | |
| inputs_dict["labels"] = torch.zeros( | |
| (self.model_tester.batch_size, self.model_tester.entity_length), | |
| dtype=torch.long, | |
| device=torch_device, | |
| ) | |
| elif model_class == LukeForTokenClassification: | |
| inputs_dict["labels"] = torch.zeros( | |
| (self.model_tester.batch_size, self.model_tester.seq_length), | |
| dtype=torch.long, | |
| device=torch_device, | |
| ) | |
| elif model_class == LukeForMaskedLM: | |
| inputs_dict["labels"] = torch.zeros( | |
| (self.model_tester.batch_size, self.model_tester.seq_length), | |
| dtype=torch.long, | |
| device=torch_device, | |
| ) | |
| inputs_dict["entity_labels"] = torch.zeros( | |
| (self.model_tester.batch_size, self.model_tester.entity_length), | |
| dtype=torch.long, | |
| device=torch_device, | |
| ) | |
| return inputs_dict | |
| def setUp(self): | |
| self.model_tester = LukeModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=LukeConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_model_from_pretrained(self): | |
| for model_name in LUKE_PRETRAINED_MODEL_ARCHIVE_LIST: | |
| model = LukeModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_for_masked_lm(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
| def test_for_masked_lm_with_word_only(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| config_and_inputs = (*config_and_inputs[:4], *((None,) * len(config_and_inputs[4:]))) | |
| self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
| def test_for_question_answering(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
| def test_for_sequence_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
| def test_for_token_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
| def test_for_multiple_choice(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
| def test_for_entity_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_entity_classification(*config_and_inputs) | |
| def test_for_entity_pair_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_entity_pair_classification(*config_and_inputs) | |
| def test_for_entity_span_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_entity_span_classification(*config_and_inputs) | |
| def test_attention_outputs(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.return_dict = True | |
| seq_length = self.model_tester.seq_length | |
| entity_length = self.model_tester.entity_length | |
| key_length = seq_length + entity_length | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = False | |
| config.return_dict = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs.attentions | |
| self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
| # check that output_attentions also work using config | |
| del inputs_dict["output_attentions"] | |
| config.output_attentions = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs.attentions | |
| self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
| self.assertListEqual( | |
| list(attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads, seq_length + entity_length, key_length], | |
| ) | |
| out_len = len(outputs) | |
| # Check attention is always last and order is fine | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| added_hidden_states = self.model_tester.num_hidden_states_types | |
| self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
| self_attentions = outputs.attentions | |
| self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
| self.assertListEqual( | |
| list(self_attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads, seq_length + entity_length, key_length], | |
| ) | |
| def test_entity_hidden_states_output(self): | |
| def check_hidden_states_output(inputs_dict, config, model_class): | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| entity_hidden_states = outputs.entity_hidden_states | |
| expected_num_layers = getattr( | |
| self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
| ) | |
| self.assertEqual(len(entity_hidden_states), expected_num_layers) | |
| entity_length = self.model_tester.entity_length | |
| self.assertListEqual( | |
| list(entity_hidden_states[0].shape[-2:]), | |
| [entity_length, self.model_tester.hidden_size], | |
| ) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| def test_retain_grad_entity_hidden_states(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.output_hidden_states = True | |
| config.output_attentions = True | |
| # no need to test all models as different heads yield the same functionality | |
| model_class = self.all_model_classes[0] | |
| model = model_class(config) | |
| model.to(torch_device) | |
| inputs = self._prepare_for_class(inputs_dict, model_class) | |
| outputs = model(**inputs) | |
| output = outputs[0] | |
| entity_hidden_states = outputs.entity_hidden_states[0] | |
| entity_hidden_states.retain_grad() | |
| output.flatten()[0].backward(retain_graph=True) | |
| self.assertIsNotNone(entity_hidden_states.grad) | |
| class LukeModelIntegrationTests(unittest.TestCase): | |
| def test_inference_base_model(self): | |
| model = LukeModel.from_pretrained("studio-ousia/luke-base").eval() | |
| model.to(torch_device) | |
| tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", task="entity_classification") | |
| text = ( | |
| "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" | |
| " the new world number one avoid a humiliating second- round exit at Wimbledon ." | |
| ) | |
| span = (39, 42) | |
| encoding = tokenizer(text, entity_spans=[span], add_prefix_space=True, return_tensors="pt") | |
| # move all values to device | |
| for key, value in encoding.items(): | |
| encoding[key] = encoding[key].to(torch_device) | |
| outputs = model(**encoding) | |
| # Verify word hidden states | |
| expected_shape = torch.Size((1, 42, 768)) | |
| self.assertEqual(outputs.last_hidden_state.shape, expected_shape) | |
| expected_slice = torch.tensor( | |
| [[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] | |
| ).to(torch_device) | |
| self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) | |
| # Verify entity hidden states | |
| expected_shape = torch.Size((1, 1, 768)) | |
| self.assertEqual(outputs.entity_last_hidden_state.shape, expected_shape) | |
| expected_slice = torch.tensor([[0.1457, 0.1044, 0.0174]]).to(torch_device) | |
| self.assertTrue(torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) | |
| def test_inference_large_model(self): | |
| model = LukeModel.from_pretrained("studio-ousia/luke-large").eval() | |
| model.to(torch_device) | |
| tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large", task="entity_classification") | |
| text = ( | |
| "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" | |
| " the new world number one avoid a humiliating second- round exit at Wimbledon ." | |
| ) | |
| span = (39, 42) | |
| encoding = tokenizer(text, entity_spans=[span], add_prefix_space=True, return_tensors="pt") | |
| # move all values to device | |
| for key, value in encoding.items(): | |
| encoding[key] = encoding[key].to(torch_device) | |
| outputs = model(**encoding) | |
| # Verify word hidden states | |
| expected_shape = torch.Size((1, 42, 1024)) | |
| self.assertEqual(outputs.last_hidden_state.shape, expected_shape) | |
| expected_slice = torch.tensor( | |
| [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] | |
| ).to(torch_device) | |
| self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) | |
| # Verify entity hidden states | |
| expected_shape = torch.Size((1, 1, 1024)) | |
| self.assertEqual(outputs.entity_last_hidden_state.shape, expected_shape) | |
| expected_slice = torch.tensor([[0.0466, -0.0106, -0.0179]]).to(torch_device) | |
| self.assertTrue(torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) | |