Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch ConvNextV2 model. """ | |
| import inspect | |
| import unittest | |
| from transformers import ConvNextV2Config | |
| from transformers.models.auto import get_values | |
| from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES | |
| from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
| from transformers.utils import cached_property, is_torch_available, is_vision_available | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import ConvNextV2Backbone, ConvNextV2ForImageClassification, ConvNextV2Model | |
| from transformers.models.convnextv2.modeling_convnextv2 import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST | |
| if is_vision_available(): | |
| from PIL import Image | |
| from transformers import AutoImageProcessor | |
| class ConvNextV2ModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| image_size=32, | |
| num_channels=3, | |
| num_stages=4, | |
| hidden_sizes=[10, 20, 30, 40], | |
| depths=[2, 2, 3, 2], | |
| is_training=True, | |
| use_labels=True, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| num_labels=10, | |
| initializer_range=0.02, | |
| out_features=["stage2", "stage3", "stage4"], | |
| out_indices=[2, 3, 4], | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.image_size = image_size | |
| self.num_channels = num_channels | |
| self.num_stages = num_stages | |
| self.hidden_sizes = hidden_sizes | |
| self.depths = depths | |
| self.is_training = is_training | |
| self.use_labels = use_labels | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.num_labels = num_labels | |
| self.initializer_range = initializer_range | |
| self.out_features = out_features | |
| self.out_indices = out_indices | |
| self.scope = scope | |
| def prepare_config_and_inputs(self): | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| labels = None | |
| if self.use_labels: | |
| labels = ids_tensor([self.batch_size], self.num_labels) | |
| config = self.get_config() | |
| return config, pixel_values, labels | |
| def get_config(self): | |
| return ConvNextV2Config( | |
| num_channels=self.num_channels, | |
| hidden_sizes=self.hidden_sizes, | |
| depths=self.depths, | |
| num_stages=self.num_stages, | |
| hidden_act=self.hidden_act, | |
| is_decoder=False, | |
| initializer_range=self.initializer_range, | |
| out_features=self.out_features, | |
| out_indices=self.out_indices, | |
| num_labels=self.num_labels, | |
| ) | |
| def create_and_check_model(self, config, pixel_values, labels): | |
| model = ConvNextV2Model(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values) | |
| # expected last hidden states: B, C, H // 32, W // 32 | |
| self.parent.assertEqual( | |
| result.last_hidden_state.shape, | |
| (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), | |
| ) | |
| def create_and_check_for_image_classification(self, config, pixel_values, labels): | |
| model = ConvNextV2ForImageClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values, labels=labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
| def create_and_check_backbone(self, config, pixel_values, labels): | |
| model = ConvNextV2Backbone(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values) | |
| # verify hidden states | |
| self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) | |
| self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4]) | |
| # verify channels | |
| self.parent.assertEqual(len(model.channels), len(config.out_features)) | |
| self.parent.assertListEqual(model.channels, config.hidden_sizes[1:]) | |
| # verify backbone works with out_features=None | |
| config.out_features = None | |
| model = ConvNextV2Backbone(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(pixel_values) | |
| # verify feature maps | |
| self.parent.assertEqual(len(result.feature_maps), 1) | |
| self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1]) | |
| # verify channels | |
| self.parent.assertEqual(len(model.channels), 1) | |
| self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, pixel_values, labels = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values} | |
| return config, inputs_dict | |
| def prepare_config_and_inputs_with_labels(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, pixel_values, labels = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values, "labels": labels} | |
| return config, inputs_dict | |
| class ConvNextV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| """ | |
| Here we also overwrite some of the tests of test_modeling_common.py, as ConvNextV2 does not use input_ids, inputs_embeds, | |
| attention_mask and seq_length. | |
| """ | |
| all_model_classes = ( | |
| ( | |
| ConvNextV2Model, | |
| ConvNextV2ForImageClassification, | |
| ConvNextV2Backbone, | |
| ) | |
| if is_torch_available() | |
| else () | |
| ) | |
| pipeline_model_mapping = ( | |
| {"feature-extraction": ConvNextV2Model, "image-classification": ConvNextV2ForImageClassification} | |
| if is_torch_available() | |
| else {} | |
| ) | |
| fx_compatible = False | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_head_masking = False | |
| has_attentions = False | |
| def setUp(self): | |
| self.model_tester = ConvNextV2ModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=ConvNextV2Config, has_text_modality=False, hidden_size=37) | |
| def test_config(self): | |
| self.create_and_test_config_common_properties() | |
| self.config_tester.create_and_test_config_to_json_string() | |
| self.config_tester.create_and_test_config_to_json_file() | |
| self.config_tester.create_and_test_config_from_and_save_pretrained() | |
| self.config_tester.create_and_test_config_with_num_labels() | |
| self.config_tester.check_config_can_be_init_without_params() | |
| self.config_tester.check_config_arguments_init() | |
| def create_and_test_config_common_properties(self): | |
| return | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| pass | |
| def test_feed_forward_chunking(self): | |
| pass | |
| def test_training(self): | |
| if not self.model_tester.is_training: | |
| return | |
| for model_class in self.all_model_classes: | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_with_labels() | |
| config.return_dict = True | |
| if model_class.__name__ in [ | |
| *get_values(MODEL_MAPPING_NAMES), | |
| *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES), | |
| ]: | |
| continue | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.train() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| loss = model(**inputs).loss | |
| loss.backward() | |
| def test_training_gradient_checkpointing(self): | |
| if not self.model_tester.is_training: | |
| return | |
| for model_class in self.all_model_classes: | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_with_labels() | |
| config.use_cache = False | |
| config.return_dict = True | |
| if ( | |
| model_class.__name__ | |
| in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] | |
| or not model_class.supports_gradient_checkpointing | |
| ): | |
| continue | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.gradient_checkpointing_enable() | |
| model.train() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| loss = model(**inputs).loss | |
| loss.backward() | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_hidden_states_output(self): | |
| def check_hidden_states_output(inputs_dict, config, model_class): | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
| expected_num_stages = self.model_tester.num_stages | |
| self.assertEqual(len(hidden_states), expected_num_stages + 1) | |
| # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) | |
| self.assertListEqual( | |
| list(hidden_states[0].shape[-2:]), | |
| [self.model_tester.image_size // 4, self.model_tester.image_size // 4], | |
| ) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| def test_for_image_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
| def test_model_from_pretrained(self): | |
| for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = ConvNextV2Model.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| # We will verify our results on an image of cute cats | |
| def prepare_img(): | |
| image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
| return image | |
| class ConvNextV2ModelIntegrationTest(unittest.TestCase): | |
| def default_image_processor(self): | |
| return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") if is_vision_available() else None | |
| def test_inference_image_classification_head(self): | |
| model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224").to(torch_device) | |
| preprocessor = self.default_image_processor | |
| image = prepare_img() | |
| inputs = preprocessor(images=image, return_tensors="pt").to(torch_device) | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # verify the logits | |
| expected_shape = torch.Size((1, 1000)) | |
| self.assertEqual(outputs.logits.shape, expected_shape) | |
| expected_slice = torch.tensor([0.9996, 0.1966, -0.4386]).to(torch_device) | |
| self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |