Spaces:
Paused
Paused
| # Copyright 2021 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import hashlib | |
| import unittest | |
| from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available | |
| from transformers.pipelines import DepthEstimationPipeline, pipeline | |
| from transformers.testing_utils import ( | |
| is_pipeline_test, | |
| nested_simplify, | |
| require_tf, | |
| require_timm, | |
| require_torch, | |
| require_vision, | |
| slow, | |
| ) | |
| from .test_pipelines_common import ANY | |
| if is_torch_available(): | |
| import torch | |
| if is_vision_available(): | |
| from PIL import Image | |
| else: | |
| class Image: | |
| def open(*args, **kwargs): | |
| pass | |
| def hashimage(image: Image) -> str: | |
| m = hashlib.md5(image.tobytes()) | |
| return m.hexdigest() | |
| class DepthEstimationPipelineTests(unittest.TestCase): | |
| model_mapping = MODEL_FOR_DEPTH_ESTIMATION_MAPPING | |
| def get_test_pipeline(self, model, tokenizer, processor): | |
| depth_estimator = DepthEstimationPipeline(model=model, image_processor=processor) | |
| return depth_estimator, [ | |
| "./tests/fixtures/tests_samples/COCO/000000039769.png", | |
| "./tests/fixtures/tests_samples/COCO/000000039769.png", | |
| ] | |
| def run_pipeline_test(self, depth_estimator, examples): | |
| outputs = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
| self.assertEqual({"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, outputs) | |
| import datasets | |
| dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test") | |
| outputs = depth_estimator( | |
| [ | |
| Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), | |
| "http://images.cocodataset.org/val2017/000000039769.jpg", | |
| # RGBA | |
| dataset[0]["file"], | |
| # LA | |
| dataset[1]["file"], | |
| # L | |
| dataset[2]["file"], | |
| ] | |
| ) | |
| self.assertEqual( | |
| [ | |
| {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, | |
| {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, | |
| {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, | |
| {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, | |
| {"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, | |
| ], | |
| outputs, | |
| ) | |
| def test_small_model_tf(self): | |
| pass | |
| def test_large_model_pt(self): | |
| model_id = "Intel/dpt-large" | |
| depth_estimator = pipeline("depth-estimation", model=model_id) | |
| outputs = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg") | |
| outputs["depth"] = hashimage(outputs["depth"]) | |
| # This seems flaky. | |
| # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") | |
| self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item()), 29.304) | |
| self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item()), 2.662) | |
| def test_small_model_pt(self): | |
| # This is highly irregular to have no small tests. | |
| self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT") | |