Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| import argparse | |
| import json | |
| from typing import List | |
| from ltp import LTP | |
| from transformers import BertTokenizer | |
| def _is_chinese_char(cp): | |
| """Checks whether CP is the codepoint of a CJK character.""" | |
| # This defines a "chinese character" as anything in the CJK Unicode block: | |
| # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) | |
| # | |
| # Note that the CJK Unicode block is NOT all Japanese and Korean characters, | |
| # despite its name. The modern Korean Hangul alphabet is a different block, | |
| # as is Japanese Hiragana and Katakana. Those alphabets are used to write | |
| # space-separated words, so they are not treated specially and handled | |
| # like the all of the other languages. | |
| if ( | |
| (cp >= 0x4E00 and cp <= 0x9FFF) | |
| or (cp >= 0x3400 and cp <= 0x4DBF) # | |
| or (cp >= 0x20000 and cp <= 0x2A6DF) # | |
| or (cp >= 0x2A700 and cp <= 0x2B73F) # | |
| or (cp >= 0x2B740 and cp <= 0x2B81F) # | |
| or (cp >= 0x2B820 and cp <= 0x2CEAF) # | |
| or (cp >= 0xF900 and cp <= 0xFAFF) | |
| or (cp >= 0x2F800 and cp <= 0x2FA1F) # | |
| ): # | |
| return True | |
| return False | |
| def is_chinese(word: str): | |
| # word like '180' or '身高' or '神' | |
| for char in word: | |
| char = ord(char) | |
| if not _is_chinese_char(char): | |
| return 0 | |
| return 1 | |
| def get_chinese_word(tokens: List[str]): | |
| word_set = set() | |
| for token in tokens: | |
| chinese_word = len(token) > 1 and is_chinese(token) | |
| if chinese_word: | |
| word_set.add(token) | |
| word_list = list(word_set) | |
| return word_list | |
| def add_sub_symbol(bert_tokens: List[str], chinese_word_set: set()): | |
| if not chinese_word_set: | |
| return bert_tokens | |
| max_word_len = max([len(w) for w in chinese_word_set]) | |
| bert_word = bert_tokens | |
| start, end = 0, len(bert_word) | |
| while start < end: | |
| single_word = True | |
| if is_chinese(bert_word[start]): | |
| l = min(end - start, max_word_len) | |
| for i in range(l, 1, -1): | |
| whole_word = "".join(bert_word[start : start + i]) | |
| if whole_word in chinese_word_set: | |
| for j in range(start + 1, start + i): | |
| bert_word[j] = "##" + bert_word[j] | |
| start = start + i | |
| single_word = False | |
| break | |
| if single_word: | |
| start += 1 | |
| return bert_word | |
| def prepare_ref(lines: List[str], ltp_tokenizer: LTP, bert_tokenizer: BertTokenizer): | |
| ltp_res = [] | |
| for i in range(0, len(lines), 100): | |
| res = ltp_tokenizer.seg(lines[i : i + 100])[0] | |
| res = [get_chinese_word(r) for r in res] | |
| ltp_res.extend(res) | |
| assert len(ltp_res) == len(lines) | |
| bert_res = [] | |
| for i in range(0, len(lines), 100): | |
| res = bert_tokenizer(lines[i : i + 100], add_special_tokens=True, truncation=True, max_length=512) | |
| bert_res.extend(res["input_ids"]) | |
| assert len(bert_res) == len(lines) | |
| ref_ids = [] | |
| for input_ids, chinese_word in zip(bert_res, ltp_res): | |
| input_tokens = [] | |
| for id in input_ids: | |
| token = bert_tokenizer._convert_id_to_token(id) | |
| input_tokens.append(token) | |
| input_tokens = add_sub_symbol(input_tokens, chinese_word) | |
| ref_id = [] | |
| # We only save pos of chinese subwords start with ##, which mean is part of a whole word. | |
| for i, token in enumerate(input_tokens): | |
| if token[:2] == "##": | |
| clean_token = token[2:] | |
| # save chinese tokens' pos | |
| if len(clean_token) == 1 and _is_chinese_char(ord(clean_token)): | |
| ref_id.append(i) | |
| ref_ids.append(ref_id) | |
| assert len(ref_ids) == len(bert_res) | |
| return ref_ids | |
| def main(args): | |
| # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) | |
| # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) | |
| with open(args.file_name, "r", encoding="utf-8") as f: | |
| data = f.readlines() | |
| data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] # avoid delimiter like '\u2029' | |
| ltp_tokenizer = LTP(args.ltp) # faster in GPU device | |
| bert_tokenizer = BertTokenizer.from_pretrained(args.bert) | |
| ref_ids = prepare_ref(data, ltp_tokenizer, bert_tokenizer) | |
| with open(args.save_path, "w", encoding="utf-8") as f: | |
| data = [json.dumps(ref) + "\n" for ref in ref_ids] | |
| f.writelines(data) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="prepare_chinese_ref") | |
| parser.add_argument( | |
| "--file_name", | |
| type=str, | |
| default="./resources/chinese-demo.txt", | |
| help="file need process, same as training data in lm", | |
| ) | |
| parser.add_argument( | |
| "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" | |
| ) | |
| parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") | |
| parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") | |
| args = parser.parse_args() | |
| main(args) | |