Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2020 Huggingface | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from transformers import ( | |
| DPRContextEncoderTokenizer, | |
| DPRContextEncoderTokenizerFast, | |
| DPRQuestionEncoderTokenizer, | |
| DPRQuestionEncoderTokenizerFast, | |
| DPRReaderOutput, | |
| DPRReaderTokenizer, | |
| DPRReaderTokenizerFast, | |
| ) | |
| from transformers.testing_utils import require_tokenizers, slow | |
| from transformers.tokenization_utils_base import BatchEncoding | |
| from ..bert.test_tokenization_bert import BertTokenizationTest | |
| class DPRContextEncoderTokenizationTest(BertTokenizationTest): | |
| tokenizer_class = DPRContextEncoderTokenizer | |
| rust_tokenizer_class = DPRContextEncoderTokenizerFast | |
| test_rust_tokenizer = True | |
| class DPRQuestionEncoderTokenizationTest(BertTokenizationTest): | |
| tokenizer_class = DPRQuestionEncoderTokenizer | |
| rust_tokenizer_class = DPRQuestionEncoderTokenizerFast | |
| test_rust_tokenizer = True | |
| class DPRReaderTokenizationTest(BertTokenizationTest): | |
| tokenizer_class = DPRReaderTokenizer | |
| rust_tokenizer_class = DPRReaderTokenizerFast | |
| test_rust_tokenizer = True | |
| def test_decode_best_spans(self): | |
| tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased") | |
| text_1 = tokenizer.encode("question sequence", add_special_tokens=False) | |
| text_2 = tokenizer.encode("title sequence", add_special_tokens=False) | |
| text_3 = tokenizer.encode("text sequence " * 4, add_special_tokens=False) | |
| input_ids = [[101] + text_1 + [102] + text_2 + [102] + text_3] | |
| reader_input = BatchEncoding({"input_ids": input_ids}) | |
| start_logits = [[0] * len(input_ids[0])] | |
| end_logits = [[0] * len(input_ids[0])] | |
| relevance_logits = [0] | |
| reader_output = DPRReaderOutput(start_logits, end_logits, relevance_logits) | |
| start_index, end_index = 8, 9 | |
| start_logits[0][start_index] = 10 | |
| end_logits[0][end_index] = 10 | |
| predicted_spans = tokenizer.decode_best_spans(reader_input, reader_output) | |
| self.assertEqual(predicted_spans[0].start_index, start_index) | |
| self.assertEqual(predicted_spans[0].end_index, end_index) | |
| self.assertEqual(predicted_spans[0].doc_id, 0) | |
| def test_call(self): | |
| tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased") | |
| text_1 = tokenizer.encode("question sequence", add_special_tokens=False) | |
| text_2 = tokenizer.encode("title sequence", add_special_tokens=False) | |
| text_3 = tokenizer.encode("text sequence", add_special_tokens=False) | |
| expected_input_ids = [101] + text_1 + [102] + text_2 + [102] + text_3 | |
| encoded_input = tokenizer(questions=["question sequence"], titles=["title sequence"], texts=["text sequence"]) | |
| self.assertIn("input_ids", encoded_input) | |
| self.assertIn("attention_mask", encoded_input) | |
| self.assertListEqual(encoded_input["input_ids"][0], expected_input_ids) | |