Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Usage: | |
| # ./gen-card-facebook-wmt19.py | |
| import os | |
| from pathlib import Path | |
| def write_model_card(model_card_dir, src_lang, tgt_lang): | |
| texts = { | |
| "en": "Machine learning is great, isn't it?", | |
| "ru": "Машинное обучение - это здорово, не так ли?", | |
| "de": "Maschinelles Lernen ist großartig, oder?", | |
| } | |
| # BLUE scores as follows: | |
| # "pair": [fairseq, transformers] | |
| scores = { | |
| "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], | |
| "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], | |
| "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], | |
| "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], | |
| } | |
| pair = f"{src_lang}-{tgt_lang}" | |
| readme = f""" | |
| --- | |
| language: | |
| - {src_lang} | |
| - {tgt_lang} | |
| thumbnail: | |
| tags: | |
| - translation | |
| - wmt19 | |
| license: apache-2.0 | |
| datasets: | |
| - wmt19 | |
| metrics: | |
| - bleu | |
| --- | |
| # FSMT | |
| ## Model description | |
| This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. | |
| For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). | |
| The abbreviation FSMT stands for FairSeqMachineTranslation | |
| All four models are available: | |
| * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) | |
| * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) | |
| * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) | |
| * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) | |
| ## Intended uses & limitations | |
| #### How to use | |
| ```python | |
| from transformers import FSMTForConditionalGeneration, FSMTTokenizer | |
| mname = "facebook/wmt19-{src_lang}-{tgt_lang}" | |
| tokenizer = FSMTTokenizer.from_pretrained(mname) | |
| model = FSMTForConditionalGeneration.from_pretrained(mname) | |
| input = "{texts[src_lang]}" | |
| input_ids = tokenizer.encode(input, return_tensors="pt") | |
| outputs = model.generate(input_ids) | |
| decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| print(decoded) # {texts[tgt_lang]} | |
| ``` | |
| #### Limitations and bias | |
| - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) | |
| ## Training data | |
| Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). | |
| ## Eval results | |
| pair | fairseq | transformers | |
| -------|---------|---------- | |
| {pair} | {scores[pair][0]} | {scores[pair][1]} | |
| The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: | |
| - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). | |
| - re-ranking | |
| The score was calculated using this code: | |
| ```bash | |
| git clone https://github.com/huggingface/transformers | |
| cd transformers | |
| export PAIR={pair} | |
| export DATA_DIR=data/$PAIR | |
| export SAVE_DIR=data/$PAIR | |
| export BS=8 | |
| export NUM_BEAMS=15 | |
| mkdir -p $DATA_DIR | |
| sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source | |
| sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target | |
| echo $PAIR | |
| PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS | |
| ``` | |
| note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. | |
| ## Data Sources | |
| - [training, etc.](http://www.statmt.org/wmt19/) | |
| - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) | |
| ### BibTeX entry and citation info | |
| ```bibtex | |
| @inproceedings{{..., | |
| year={{2020}}, | |
| title={{Facebook FAIR's WMT19 News Translation Task Submission}}, | |
| author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, | |
| booktitle={{Proc. of WMT}}, | |
| }} | |
| ``` | |
| ## TODO | |
| - port model ensemble (fairseq uses 4 model checkpoints) | |
| """ | |
| os.makedirs(model_card_dir, exist_ok=True) | |
| path = os.path.join(model_card_dir, "README.md") | |
| print(f"Generating {path}") | |
| with open(path, "w", encoding="utf-8") as f: | |
| f.write(readme) | |
| # make sure we are under the root of the project | |
| repo_dir = Path(__file__).resolve().parent.parent.parent | |
| model_cards_dir = repo_dir / "model_cards" | |
| for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: | |
| base, src_lang, tgt_lang = model_name.split("-") | |
| model_card_dir = model_cards_dir / "facebook" / model_name | |
| write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang) | |