Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Fine-tuning the library models for causal language modeling (GPT-2, GPT-Neo...) | |
| on a text file or a dataset without using HuggingFace Trainer. | |
| Here is the full list of checkpoints on the hub that can be fine-tuned by this script: | |
| https://huggingface.co/models?filter=text-generation | |
| """ | |
| # You can also adapt this script on your own clm task. Pointers for this are left as comments. | |
| import json | |
| # region Imports | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import sys | |
| import warnings | |
| from dataclasses import dataclass, field | |
| from itertools import chain | |
| from pathlib import Path | |
| from typing import Optional | |
| import datasets | |
| import tensorflow as tf | |
| from datasets import load_dataset | |
| from sklearn.model_selection import train_test_split | |
| import transformers | |
| from transformers import ( | |
| CONFIG_MAPPING, | |
| CONFIG_NAME, | |
| TF2_WEIGHTS_NAME, | |
| TF_MODEL_FOR_CAUSAL_LM_MAPPING, | |
| AutoConfig, | |
| AutoTokenizer, | |
| HfArgumentParser, | |
| PushToHubCallback, | |
| TFAutoModelForCausalLM, | |
| TFTrainingArguments, | |
| create_optimizer, | |
| set_seed, | |
| ) | |
| from transformers.utils import send_example_telemetry | |
| from transformers.utils.versions import require_version | |
| logger = logging.getLogger(__name__) | |
| require_version("datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/language-modeling/requirements.txt") | |
| MODEL_CONFIG_CLASSES = list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.keys()) | |
| MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
| # endregion | |
| # region Command-line arguments | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
| """ | |
| model_name_or_path: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." | |
| ) | |
| }, | |
| ) | |
| model_type: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | |
| ) | |
| config_overrides: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "Override some existing default config settings when a model is trained from scratch. Example: " | |
| "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" | |
| ) | |
| }, | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| use_fast_tokenizer: bool = field( | |
| default=True, | |
| metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
| ) | |
| model_revision: str = field( | |
| default="main", | |
| metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
| ) | |
| token: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
| "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
| ) | |
| }, | |
| ) | |
| use_auth_token: bool = field( | |
| default=None, | |
| metadata={ | |
| "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." | |
| }, | |
| ) | |
| trust_remote_code: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" | |
| "should only be set to `True` for repositories you trust and in which you have read the code, as it will" | |
| "execute code present on the Hub on your local machine." | |
| ) | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): | |
| raise ValueError( | |
| "--config_overrides can't be used in combination with --config_name or --model_name_or_path" | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| dataset_name: Optional[str] = field( | |
| default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
| validation_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| validation_split_percentage: Optional[int] = field( | |
| default=5, | |
| metadata={ | |
| "help": "The percentage of the train set used as validation set in case there's no validation split" | |
| }, | |
| ) | |
| block_size: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "Optional input sequence length after tokenization. " | |
| "The training dataset will be truncated in block of this size for training. " | |
| "Default to the model max input length for single sentence inputs (take into account special tokens)." | |
| ) | |
| }, | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| line_by_line: bool = field( | |
| default=False, | |
| metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| keep_linebreaks: bool = field( | |
| default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."} | |
| ) | |
| def __post_init__(self): | |
| if self.dataset_name is None and self.train_file is None and self.validation_file is None: | |
| raise ValueError("Need either a dataset name or a training/validation file.") | |
| else: | |
| if self.train_file is not None: | |
| extension = self.train_file.split(".")[-1] | |
| assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." | |
| if self.validation_file is not None: | |
| extension = self.validation_file.split(".")[-1] | |
| assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." | |
| # endregion | |
| def main(): | |
| # region Argument Parsing | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| if model_args.use_auth_token is not None: | |
| warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) | |
| if model_args.token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| model_args.token = model_args.use_auth_token | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_clm", model_args, data_args, framework="tensorflow") | |
| # Sanity checks | |
| if data_args.dataset_name is None and data_args.train_file is None and data_args.validation_file is None: | |
| raise ValueError("Need either a dataset name or a training/validation file.") | |
| else: | |
| if data_args.train_file is not None: | |
| extension = data_args.train_file.split(".")[-1] | |
| assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file." | |
| if data_args.validation_file is not None: | |
| extension = data_args.validation_file.split(".")[-1] | |
| assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file." | |
| if training_args.output_dir is not None: | |
| training_args.output_dir = Path(training_args.output_dir) | |
| os.makedirs(training_args.output_dir, exist_ok=True) | |
| # endregion | |
| # region Checkpoints | |
| # Detecting last checkpoint. | |
| checkpoint = None | |
| if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir: | |
| config_path = training_args.output_dir / CONFIG_NAME | |
| weights_path = training_args.output_dir / TF2_WEIGHTS_NAME | |
| if config_path.is_file() and weights_path.is_file(): | |
| checkpoint = training_args.output_dir | |
| logger.info( | |
| f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this" | |
| " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
| ) | |
| else: | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
| "Use --overwrite_output_dir to continue regardless." | |
| ) | |
| # endregion | |
| # region Setup logging | |
| # accelerator.is_local_main_process is only True for one process per machine. | |
| logger.setLevel(logging.INFO) | |
| datasets.utils.logging.set_verbosity_warning() | |
| transformers.utils.logging.set_verbosity_info() | |
| # endregion | |
| # If passed along, set the training seed now. | |
| if training_args.seed is not None: | |
| set_seed(training_args.seed) | |
| # region Load datasets | |
| # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
| # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
| # (the dataset will be downloaded automatically from the datasets Hub). | |
| # | |
| # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
| # 'text' is found. You can easily tweak this behavior (see below). | |
| # | |
| # In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
| # download the dataset. | |
| if data_args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| raw_datasets = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| if "validation" not in raw_datasets.keys(): | |
| raw_datasets["validation"] = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| split=f"train[:{data_args.validation_split_percentage}%]", | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| raw_datasets["train"] = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| split=f"train[{data_args.validation_split_percentage}%:]", | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| else: | |
| data_files = {} | |
| dataset_args = {} | |
| if data_args.train_file is not None: | |
| data_files["train"] = data_args.train_file | |
| if data_args.validation_file is not None: | |
| data_files["validation"] = data_args.validation_file | |
| extension = ( | |
| data_args.train_file.split(".")[-1] | |
| if data_args.train_file is not None | |
| else data_args.validation_file.split(".")[-1] | |
| ) | |
| if extension == "txt": | |
| extension = "text" | |
| dataset_args["keep_linebreaks"] = data_args.keep_linebreaks | |
| raw_datasets = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| **dataset_args, | |
| ) | |
| # If no validation data is there, validation_split_percentage will be used to divide the dataset. | |
| if "validation" not in raw_datasets.keys(): | |
| raw_datasets["validation"] = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| split=f"train[:{data_args.validation_split_percentage}%]", | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| **dataset_args, | |
| ) | |
| raw_datasets["train"] = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| split=f"train[{data_args.validation_split_percentage}%:]", | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| **dataset_args, | |
| ) | |
| # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
| # https://huggingface.co/docs/datasets/loading_datasets.html. | |
| # endregion | |
| # region Load pretrained model and tokenizer | |
| # | |
| # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently | |
| # download model & vocab. | |
| if model_args.config_name: | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| elif model_args.model_name_or_path: | |
| config = AutoConfig.from_pretrained( | |
| model_args.model_name_or_path, token=model_args.token, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| else: | |
| config = CONFIG_MAPPING[model_args.model_type]() | |
| logger.warning("You are instantiating a new config instance from scratch.") | |
| if model_args.tokenizer_name: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name, token=model_args.token, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| elif model_args.model_name_or_path: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, token=model_args.token, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| else: | |
| raise ValueError( | |
| "You are instantiating a new tokenizer from scratch. This is not supported by this script." | |
| "You can do it from another script, save it, and load it from here, using --tokenizer_name." | |
| ) | |
| # endregion | |
| # region Dataset preprocessing | |
| # First we tokenize all the texts. | |
| column_names = raw_datasets["train"].column_names | |
| text_column_name = "text" if "text" in column_names else column_names[0] | |
| def tokenize_function(examples): | |
| return tokenizer(examples[text_column_name]) | |
| tokenized_datasets = raw_datasets.map( | |
| tokenize_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on dataset", | |
| ) | |
| if data_args.block_size is None: | |
| block_size = tokenizer.model_max_length | |
| if block_size > 1024: | |
| logger.warning( | |
| f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " | |
| "Picking 1024 instead. You can change that default value by passing --block_size xxx." | |
| ) | |
| block_size = 1024 | |
| else: | |
| if data_args.block_size > tokenizer.model_max_length: | |
| logger.warning( | |
| f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model" | |
| f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." | |
| ) | |
| block_size = min(data_args.block_size, tokenizer.model_max_length) | |
| # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. | |
| def group_texts(examples): | |
| # Concatenate all texts. | |
| concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} | |
| total_length = len(concatenated_examples[list(examples.keys())[0]]) | |
| # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can | |
| # customize this part to your needs. | |
| if total_length >= block_size: | |
| total_length = (total_length // block_size) * block_size | |
| # Split by chunks of max_len. | |
| result = { | |
| k: [t[i : i + block_size] for i in range(0, total_length, block_size)] | |
| for k, t in concatenated_examples.items() | |
| } | |
| result["labels"] = result["input_ids"].copy() | |
| return result | |
| # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder | |
| # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower | |
| # to preprocess. | |
| # | |
| # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: | |
| # https://huggingface.co/docs/datasets/process#map | |
| lm_datasets = tokenized_datasets.map( | |
| group_texts, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc=f"Grouping texts in chunks of {block_size}", | |
| ) | |
| train_dataset = lm_datasets["train"] | |
| if data_args.validation_file is not None: | |
| eval_dataset = lm_datasets["validation"] | |
| else: | |
| logger.info( | |
| f"Validation file not found: using {data_args.validation_split_percentage}% of the dataset as validation" | |
| " as provided in data_args" | |
| ) | |
| train_indices, val_indices = train_test_split( | |
| list(range(len(train_dataset))), test_size=data_args.validation_split_percentage / 100 | |
| ) | |
| eval_dataset = train_dataset.select(val_indices) | |
| train_dataset = train_dataset.select(train_indices) | |
| if data_args.max_train_samples is not None: | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| if data_args.max_eval_samples is not None: | |
| max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
| eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
| # Log a few random samples from the training set: | |
| for index in random.sample(range(len(train_dataset)), min(3, len(train_dataset))): | |
| logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") | |
| # endregion | |
| with training_args.strategy.scope(): | |
| # region Prepare model | |
| if checkpoint is not None: | |
| model = TFAutoModelForCausalLM.from_pretrained( | |
| checkpoint, config=config, token=model_args.token, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| elif model_args.model_name_or_path: | |
| model = TFAutoModelForCausalLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| config=config, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| else: | |
| logger.info("Training new model from scratch") | |
| model = TFAutoModelForCausalLM.from_config( | |
| config, token=model_args.token, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch | |
| # on a small vocab and want a smaller embedding size, remove this test. | |
| embeddings = model.get_input_embeddings() | |
| # Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings. | |
| # As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and | |
| # the weights will always be in embeddings.embeddings. | |
| if hasattr(embeddings, "embeddings"): | |
| embedding_size = embeddings.embeddings.shape[0] | |
| else: | |
| embedding_size = embeddings.weight.shape[0] | |
| if len(tokenizer) > embedding_size: | |
| model.resize_token_embeddings(len(tokenizer)) | |
| # endregion | |
| # region TF Dataset preparation | |
| num_replicas = training_args.strategy.num_replicas_in_sync | |
| options = tf.data.Options() | |
| options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF | |
| # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in | |
| # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also | |
| # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names | |
| # yourself if you use this method, whereas they are automatically inferred from the model input names when | |
| # using model.prepare_tf_dataset() | |
| # For more info see the docs: | |
| # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset | |
| # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset | |
| tf_train_dataset = model.prepare_tf_dataset( | |
| train_dataset, | |
| shuffle=True, | |
| batch_size=num_replicas * training_args.per_device_train_batch_size, | |
| ).with_options(options) | |
| tf_eval_dataset = model.prepare_tf_dataset( | |
| eval_dataset, | |
| shuffle=False, | |
| batch_size=num_replicas * training_args.per_device_eval_batch_size, | |
| drop_remainder=True, | |
| ).with_options(options) | |
| # endregion | |
| # region Optimizer and loss | |
| num_train_steps = len(tf_train_dataset) * int(training_args.num_train_epochs) | |
| if training_args.warmup_steps > 0: | |
| num_warmup_steps = training_args.warmup_steps | |
| elif training_args.warmup_ratio > 0: | |
| num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) | |
| else: | |
| num_warmup_steps = 0 | |
| # Bias and layernorm weights are automatically excluded from the decay | |
| optimizer, lr_schedule = create_optimizer( | |
| init_lr=training_args.learning_rate, | |
| num_train_steps=num_train_steps, | |
| num_warmup_steps=num_warmup_steps, | |
| adam_beta1=training_args.adam_beta1, | |
| adam_beta2=training_args.adam_beta2, | |
| adam_epsilon=training_args.adam_epsilon, | |
| weight_decay_rate=training_args.weight_decay, | |
| adam_global_clipnorm=training_args.max_grad_norm, | |
| ) | |
| # Transformers models compute the right loss for their task by default when labels are passed, and will | |
| # use this for training unless you specify your own loss function in compile(). | |
| model.compile(optimizer=optimizer, jit_compile=training_args.xla) | |
| # endregion | |
| # region Preparing push_to_hub and model card | |
| push_to_hub_model_id = training_args.push_to_hub_model_id | |
| model_name = model_args.model_name_or_path.split("/")[-1] | |
| if not push_to_hub_model_id: | |
| if data_args.dataset_name is not None: | |
| push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}" | |
| else: | |
| push_to_hub_model_id = f"{model_name}-finetuned-clm" | |
| model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"} | |
| if data_args.dataset_name is not None: | |
| model_card_kwargs["dataset_tags"] = data_args.dataset_name | |
| if data_args.dataset_config_name is not None: | |
| model_card_kwargs["dataset_args"] = data_args.dataset_config_name | |
| model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" | |
| else: | |
| model_card_kwargs["dataset"] = data_args.dataset_name | |
| if training_args.push_to_hub: | |
| callbacks = [ | |
| PushToHubCallback( | |
| output_dir=training_args.output_dir, | |
| hub_model_id=push_to_hub_model_id, | |
| hub_token=training_args.push_to_hub_token, | |
| tokenizer=tokenizer, | |
| **model_card_kwargs, | |
| ) | |
| ] | |
| else: | |
| callbacks = [] | |
| # endregion | |
| # region Training and validation | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num Epochs = {training_args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") | |
| logger.info(f" Total train batch size = {training_args.per_device_train_batch_size * num_replicas}") | |
| # For long training runs, you may wish to use the PushToHub() callback here to save intermediate checkpoints | |
| # to the Hugging Face Hub rather than just pushing the finished model. | |
| # See https://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.PushToHubCallback | |
| history = model.fit( | |
| tf_train_dataset, | |
| validation_data=tf_eval_dataset, | |
| epochs=int(training_args.num_train_epochs), | |
| callbacks=callbacks, | |
| ) | |
| train_loss = history.history["loss"][-1] | |
| try: | |
| train_perplexity = math.exp(train_loss) | |
| except OverflowError: | |
| train_perplexity = math.inf | |
| logger.info(f" Final train loss: {train_loss:.3f}") | |
| logger.info(f" Final train perplexity: {train_perplexity:.3f}") | |
| validation_loss = history.history["val_loss"][-1] | |
| try: | |
| validation_perplexity = math.exp(validation_loss) | |
| except OverflowError: | |
| validation_perplexity = math.inf | |
| logger.info(f" Final validation loss: {validation_loss:.3f}") | |
| logger.info(f" Final validation perplexity: {validation_perplexity:.3f}") | |
| if training_args.output_dir is not None: | |
| output_eval_file = os.path.join(training_args.output_dir, "all_results.json") | |
| results_dict = {} | |
| results_dict["train_loss"] = train_loss | |
| results_dict["train_perplexity"] = train_perplexity | |
| results_dict["eval_loss"] = validation_loss | |
| results_dict["eval_perplexity"] = validation_perplexity | |
| with open(output_eval_file, "w") as writer: | |
| writer.write(json.dumps(results_dict)) | |
| # endregion | |
| if training_args.output_dir is not None and not training_args.push_to_hub: | |
| # If we're not pushing to hub, at least save a local copy when we're done | |
| model.save_pretrained(training_args.output_dir) | |
| if __name__ == "__main__": | |
| main() | |