Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM). | |
| Adapted from `examples/text-classification/run_glue.py`""" | |
| import logging | |
| import os | |
| import random | |
| import sys | |
| import warnings | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| import datasets | |
| import evaluate | |
| import numpy as np | |
| from datasets import load_dataset | |
| import transformers | |
| from transformers import ( | |
| AutoConfig, | |
| AutoModelForSequenceClassification, | |
| AutoTokenizer, | |
| DataCollatorWithPadding, | |
| EvalPrediction, | |
| HfArgumentParser, | |
| Trainer, | |
| TrainingArguments, | |
| default_data_collator, | |
| set_seed, | |
| ) | |
| from transformers.trainer_utils import get_last_checkpoint | |
| from transformers.utils import check_min_version, send_example_telemetry | |
| from transformers.utils.versions import require_version | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
| check_min_version("4.34.0.dev0") | |
| require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") | |
| logger = logging.getLogger(__name__) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| Using `HfArgumentParser` we can turn this class | |
| into argparse arguments to be able to specify them on | |
| the command line. | |
| """ | |
| max_seq_length: Optional[int] = field( | |
| default=128, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | |
| ) | |
| pad_to_max_length: bool = field( | |
| default=True, | |
| metadata={ | |
| "help": ( | |
| "Whether to pad all samples to `max_seq_length`. " | |
| "If False, will pad the samples dynamically when batching to the maximum length in the batch." | |
| ) | |
| }, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_predict_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| language: str = field( | |
| default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} | |
| ) | |
| train_language: Optional[str] = field( | |
| default=None, metadata={"help": "Train language if it is different from the evaluation language."} | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| do_lower_case: Optional[bool] = field( | |
| default=False, | |
| metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"}, | |
| ) | |
| use_fast_tokenizer: bool = field( | |
| default=True, | |
| metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
| ) | |
| model_revision: str = field( | |
| default="main", | |
| metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
| ) | |
| token: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
| "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
| ) | |
| }, | |
| ) | |
| use_auth_token: bool = field( | |
| default=None, | |
| metadata={ | |
| "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." | |
| }, | |
| ) | |
| trust_remote_code: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" | |
| "should only be set to `True` for repositories you trust and in which you have read the code, as it will" | |
| "execute code present on the Hub on your local machine." | |
| ) | |
| }, | |
| ) | |
| ignore_mismatched_sizes: bool = field( | |
| default=False, | |
| metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, | |
| ) | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| if model_args.use_auth_token is not None: | |
| warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) | |
| if model_args.token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| model_args.token = model_args.use_auth_token | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_xnli", model_args) | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| if training_args.should_log: | |
| # The default of training_args.log_level is passive, so we set log level at info here to have that default. | |
| transformers.utils.logging.set_verbosity_info() | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| datasets.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| # Log on each process the small summary: | |
| logger.warning( | |
| f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
| + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" | |
| ) | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # Detecting last checkpoint. | |
| last_checkpoint = None | |
| if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
| last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
| if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
| "Use --overwrite_output_dir to overcome." | |
| ) | |
| elif last_checkpoint is not None: | |
| logger.info( | |
| f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
| "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
| ) | |
| # Set seed before initializing model. | |
| set_seed(training_args.seed) | |
| # In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
| # download the dataset. | |
| # Downloading and loading xnli dataset from the hub. | |
| if training_args.do_train: | |
| if model_args.train_language is None: | |
| train_dataset = load_dataset( | |
| "xnli", | |
| model_args.language, | |
| split="train", | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| else: | |
| train_dataset = load_dataset( | |
| "xnli", | |
| model_args.train_language, | |
| split="train", | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| label_list = train_dataset.features["label"].names | |
| if training_args.do_eval: | |
| eval_dataset = load_dataset( | |
| "xnli", | |
| model_args.language, | |
| split="validation", | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| label_list = eval_dataset.features["label"].names | |
| if training_args.do_predict: | |
| predict_dataset = load_dataset( | |
| "xnli", | |
| model_args.language, | |
| split="test", | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| label_list = predict_dataset.features["label"].names | |
| # Labels | |
| num_labels = len(label_list) | |
| # Load pretrained model and tokenizer | |
| # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently | |
| # download model & vocab. | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
| num_labels=num_labels, | |
| id2label={str(i): label for i, label in enumerate(label_list)}, | |
| label2id={label: i for i, label in enumerate(label_list)}, | |
| finetuning_task="xnli", | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
| do_lower_case=model_args.do_lower_case, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=model_args.use_fast_tokenizer, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| model = AutoModelForSequenceClassification.from_pretrained( | |
| model_args.model_name_or_path, | |
| from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
| config=config, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, | |
| ) | |
| # Preprocessing the datasets | |
| # Padding strategy | |
| if data_args.pad_to_max_length: | |
| padding = "max_length" | |
| else: | |
| # We will pad later, dynamically at batch creation, to the max sequence length in each batch | |
| padding = False | |
| def preprocess_function(examples): | |
| # Tokenize the texts | |
| return tokenizer( | |
| examples["premise"], | |
| examples["hypothesis"], | |
| padding=padding, | |
| max_length=data_args.max_seq_length, | |
| truncation=True, | |
| ) | |
| if training_args.do_train: | |
| if data_args.max_train_samples is not None: | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| with training_args.main_process_first(desc="train dataset map pre-processing"): | |
| train_dataset = train_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on train dataset", | |
| ) | |
| # Log a few random samples from the training set: | |
| for index in random.sample(range(len(train_dataset)), 3): | |
| logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") | |
| if training_args.do_eval: | |
| if data_args.max_eval_samples is not None: | |
| max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
| eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
| with training_args.main_process_first(desc="validation dataset map pre-processing"): | |
| eval_dataset = eval_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on validation dataset", | |
| ) | |
| if training_args.do_predict: | |
| if data_args.max_predict_samples is not None: | |
| max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
| predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
| with training_args.main_process_first(desc="prediction dataset map pre-processing"): | |
| predict_dataset = predict_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on prediction dataset", | |
| ) | |
| # Get the metric function | |
| metric = evaluate.load("xnli") | |
| # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a | |
| # predictions and label_ids field) and has to return a dictionary string to float. | |
| def compute_metrics(p: EvalPrediction): | |
| preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions | |
| preds = np.argmax(preds, axis=1) | |
| return metric.compute(predictions=preds, references=p.label_ids) | |
| # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. | |
| if data_args.pad_to_max_length: | |
| data_collator = default_data_collator | |
| elif training_args.fp16: | |
| data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) | |
| else: | |
| data_collator = None | |
| # Initialize our Trainer | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_dataset if training_args.do_train else None, | |
| eval_dataset=eval_dataset if training_args.do_eval else None, | |
| compute_metrics=compute_metrics, | |
| tokenizer=tokenizer, | |
| data_collator=data_collator, | |
| ) | |
| # Training | |
| if training_args.do_train: | |
| checkpoint = None | |
| if training_args.resume_from_checkpoint is not None: | |
| checkpoint = training_args.resume_from_checkpoint | |
| elif last_checkpoint is not None: | |
| checkpoint = last_checkpoint | |
| train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
| metrics = train_result.metrics | |
| max_train_samples = ( | |
| data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) | |
| ) | |
| metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
| trainer.save_model() # Saves the tokenizer too for easy upload | |
| trainer.log_metrics("train", metrics) | |
| trainer.save_metrics("train", metrics) | |
| trainer.save_state() | |
| # Evaluation | |
| if training_args.do_eval: | |
| logger.info("*** Evaluate ***") | |
| metrics = trainer.evaluate(eval_dataset=eval_dataset) | |
| max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) | |
| metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) | |
| trainer.log_metrics("eval", metrics) | |
| trainer.save_metrics("eval", metrics) | |
| # Prediction | |
| if training_args.do_predict: | |
| logger.info("*** Predict ***") | |
| predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict") | |
| max_predict_samples = ( | |
| data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) | |
| ) | |
| metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) | |
| trainer.log_metrics("predict", metrics) | |
| trainer.save_metrics("predict", metrics) | |
| predictions = np.argmax(predictions, axis=1) | |
| output_predict_file = os.path.join(training_args.output_dir, "predictions.txt") | |
| if trainer.is_world_process_zero(): | |
| with open(output_predict_file, "w") as writer: | |
| writer.write("index\tprediction\n") | |
| for index, item in enumerate(predictions): | |
| item = label_list[item] | |
| writer.write(f"{index}\t{item}\n") | |
| if __name__ == "__main__": | |
| main() | |