Spaces:
Paused
Paused
| #!/usr/bin/env python3 | |
| import logging | |
| import pathlib | |
| import re | |
| import sys | |
| from dataclasses import dataclass, field | |
| from typing import Any, Callable, Dict, List, Optional, Set, Union | |
| import datasets | |
| import librosa | |
| import numpy as np | |
| import torch | |
| from lang_trans import arabic | |
| from packaging import version | |
| from torch import nn | |
| from transformers import ( | |
| HfArgumentParser, | |
| Trainer, | |
| TrainingArguments, | |
| Wav2Vec2CTCTokenizer, | |
| Wav2Vec2FeatureExtractor, | |
| Wav2Vec2ForCTC, | |
| Wav2Vec2Processor, | |
| is_apex_available, | |
| trainer_utils, | |
| ) | |
| if is_apex_available(): | |
| from apex import amp | |
| if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): | |
| _is_native_amp_available = True | |
| from torch.cuda.amp import autocast | |
| logger = logging.getLogger(__name__) | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| freeze_feature_extractor: Optional[bool] = field( | |
| default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."} | |
| ) | |
| verbose_logging: Optional[bool] = field( | |
| default=False, | |
| metadata={"help": "Whether to log verbose messages or not."}, | |
| ) | |
| def configure_logger(model_args: ModelArguments, training_args: TrainingArguments): | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| logging_level = logging.WARNING | |
| if model_args.verbose_logging: | |
| logging_level = logging.DEBUG | |
| elif trainer_utils.is_main_process(training_args.local_rank): | |
| logging_level = logging.INFO | |
| logger.setLevel(logging_level) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| Using `HfArgumentParser` we can turn this class | |
| into argparse arguments to be able to specify them on | |
| the command line. | |
| """ | |
| dataset_name: str = field( | |
| default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| train_split_name: Optional[str] = field( | |
| default="train", | |
| metadata={ | |
| "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" | |
| }, | |
| ) | |
| validation_split_name: Optional[str] = field( | |
| default="validation", | |
| metadata={ | |
| "help": ( | |
| "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" | |
| ) | |
| }, | |
| ) | |
| target_text_column: Optional[str] = field( | |
| default="text", | |
| metadata={"help": "Column in the dataset that contains label (target text). Defaults to 'text'"}, | |
| ) | |
| speech_file_column: Optional[str] = field( | |
| default="file", | |
| metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"}, | |
| ) | |
| target_feature_extractor_sampling_rate: Optional[bool] = field( | |
| default=False, | |
| metadata={"help": "Resample loaded audio to target feature extractor's sampling rate or not."}, | |
| ) | |
| max_duration_in_seconds: Optional[float] = field( | |
| default=None, | |
| metadata={"help": "Filters out examples longer than specified. Defaults to no filtering."}, | |
| ) | |
| orthography: Optional[str] = field( | |
| default="librispeech", | |
| metadata={ | |
| "help": ( | |
| "Orthography used for normalization and tokenization: 'librispeech' (default), 'timit', or" | |
| " 'buckwalter'." | |
| ) | |
| }, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| class Orthography: | |
| """ | |
| Orthography scheme used for text normalization and tokenization. | |
| Args: | |
| do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not to accept lowercase input and lowercase the output when decoding. | |
| vocab_file (:obj:`str`, `optional`): | |
| File containing the vocabulary. | |
| word_delimiter_token (:obj:`str`, `optional`, defaults to :obj:`"|"`): | |
| The token used for delimiting words; it needs to be in the vocabulary. | |
| translation_table (:obj:`Dict[str, str]`, `optional`, defaults to :obj:`{}`): | |
| Table to use with `str.translate()` when preprocessing text (e.g., "-" -> " "). | |
| words_to_remove (:obj:`Set[str]`, `optional`, defaults to :obj:`set()`): | |
| Words to remove when preprocessing text (e.g., "sil"). | |
| untransliterator (:obj:`Callable[[str], str]`, `optional`): | |
| Function that untransliterates text back into native writing system. | |
| """ | |
| do_lower_case: bool = False | |
| vocab_file: Optional[str] = None | |
| word_delimiter_token: Optional[str] = "|" | |
| translation_table: Optional[Dict[str, str]] = field(default_factory=dict) | |
| words_to_remove: Optional[Set[str]] = field(default_factory=set) | |
| untransliterator: Optional[Callable[[str], str]] = None | |
| def from_name(cls, name: str): | |
| if name == "librispeech": | |
| return cls() | |
| if name == "timit": | |
| return cls( | |
| do_lower_case=True, | |
| # break compounds like "quarter-century-old" and replace pauses "--" | |
| translation_table=str.maketrans({"-": " "}), | |
| ) | |
| if name == "buckwalter": | |
| translation_table = { | |
| "-": " ", # sometimes used to represent pauses | |
| "^": "v", # fixing "tha" in arabic_speech_corpus dataset | |
| } | |
| return cls( | |
| vocab_file=pathlib.Path(__file__).parent.joinpath("vocab/buckwalter.json"), | |
| word_delimiter_token="/", # "|" is Arabic letter alef with madda above | |
| translation_table=str.maketrans(translation_table), | |
| words_to_remove={"sil"}, # fixing "sil" in arabic_speech_corpus dataset | |
| untransliterator=arabic.buckwalter.untransliterate, | |
| ) | |
| raise ValueError(f"Unsupported orthography: '{name}'.") | |
| def preprocess_for_training(self, text: str) -> str: | |
| # TODO(elgeish) return a pipeline (e.g., from jiwer) instead? Or rely on branch predictor as is | |
| if len(self.translation_table) > 0: | |
| text = text.translate(self.translation_table) | |
| if len(self.words_to_remove) == 0: | |
| text = " ".join(text.split()) # clean up whitespaces | |
| else: | |
| text = " ".join(w for w in text.split() if w not in self.words_to_remove) # and clean up whilespaces | |
| return text | |
| def create_processor(self, model_args: ModelArguments) -> Wav2Vec2Processor: | |
| feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( | |
| model_args.model_name_or_path, cache_dir=model_args.cache_dir | |
| ) | |
| if self.vocab_file: | |
| tokenizer = Wav2Vec2CTCTokenizer( | |
| self.vocab_file, | |
| cache_dir=model_args.cache_dir, | |
| do_lower_case=self.do_lower_case, | |
| word_delimiter_token=self.word_delimiter_token, | |
| ) | |
| else: | |
| tokenizer = Wav2Vec2CTCTokenizer.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| do_lower_case=self.do_lower_case, | |
| word_delimiter_token=self.word_delimiter_token, | |
| ) | |
| return Wav2Vec2Processor(feature_extractor, tokenizer) | |
| class DataCollatorCTCWithPadding: | |
| """ | |
| Data collator that will dynamically pad the inputs received. | |
| Args: | |
| processor (:class:`~transformers.Wav2Vec2Processor`) | |
| The processor used for proccessing the data. | |
| padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): | |
| Select a strategy to pad the returned sequences (according to the model's padding side and padding index) | |
| among: | |
| * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
| sequence if provided). | |
| * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the | |
| maximum acceptable input length for the model if that argument is not provided. | |
| * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of | |
| different lengths). | |
| max_length (:obj:`int`, `optional`): | |
| Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). | |
| max_length_labels (:obj:`int`, `optional`): | |
| Maximum length of the ``labels`` returned list and optionally padding length (see above). | |
| pad_to_multiple_of (:obj:`int`, `optional`): | |
| If set will pad the sequence to a multiple of the provided value. | |
| This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= | |
| 7.5 (Volta). | |
| """ | |
| processor: Wav2Vec2Processor | |
| padding: Union[bool, str] = True | |
| max_length: Optional[int] = None | |
| max_length_labels: Optional[int] = None | |
| pad_to_multiple_of: Optional[int] = None | |
| pad_to_multiple_of_labels: Optional[int] = None | |
| def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: | |
| # split inputs and labels since they have to be of different lengths and need | |
| # different padding methods | |
| input_features = [{"input_values": feature["input_values"]} for feature in features] | |
| label_features = [{"input_ids": feature["labels"]} for feature in features] | |
| batch = self.processor.pad( | |
| input_features, | |
| padding=self.padding, | |
| max_length=self.max_length, | |
| pad_to_multiple_of=self.pad_to_multiple_of, | |
| return_tensors="pt", | |
| ) | |
| labels_batch = self.processor.pad( | |
| labels=label_features, | |
| padding=self.padding, | |
| max_length=self.max_length_labels, | |
| pad_to_multiple_of=self.pad_to_multiple_of_labels, | |
| return_tensors="pt", | |
| ) | |
| # replace padding with -100 to ignore loss correctly | |
| labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) | |
| batch["labels"] = labels | |
| return batch | |
| class CTCTrainer(Trainer): | |
| def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: | |
| """ | |
| Perform a training step on a batch of inputs. | |
| Subclass and override to inject custom behavior. | |
| Args: | |
| model (:obj:`nn.Module`): | |
| The model to train. | |
| inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): | |
| The inputs and targets of the model. | |
| The dictionary will be unpacked before being fed to the model. Most models expect the targets under the | |
| argument :obj:`labels`. Check your model's documentation for all accepted arguments. | |
| Return: | |
| :obj:`torch.Tensor`: The tensor with training loss on this batch. | |
| """ | |
| model.train() | |
| inputs = self._prepare_inputs(inputs) | |
| if self.use_amp: | |
| with autocast(): | |
| loss = self.compute_loss(model, inputs) | |
| else: | |
| loss = self.compute_loss(model, inputs) | |
| if self.args.n_gpu > 1: | |
| if model.module.config.ctc_loss_reduction == "mean": | |
| loss = loss.mean() | |
| elif model.module.config.ctc_loss_reduction == "sum": | |
| loss = loss.sum() / (inputs["labels"] >= 0).sum() | |
| else: | |
| raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") | |
| if self.args.gradient_accumulation_steps > 1: | |
| loss = loss / self.args.gradient_accumulation_steps | |
| if self.use_amp: | |
| self.scaler.scale(loss).backward() | |
| elif self.use_apex: | |
| with amp.scale_loss(loss, self.optimizer) as scaled_loss: | |
| scaled_loss.backward() | |
| elif self.deepspeed: | |
| self.deepspeed.backward(loss) | |
| else: | |
| loss.backward() | |
| return loss.detach() | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| configure_logger(model_args, training_args) | |
| orthography = Orthography.from_name(data_args.orthography.lower()) | |
| processor = orthography.create_processor(model_args) | |
| model = Wav2Vec2ForCTC.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| gradient_checkpointing=training_args.gradient_checkpointing, | |
| vocab_size=len(processor.tokenizer), | |
| ) | |
| train_dataset = datasets.load_dataset( | |
| data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name | |
| ) | |
| val_dataset = datasets.load_dataset( | |
| data_args.dataset_name, data_args.dataset_config_name, split=data_args.validation_split_name | |
| ) | |
| wer_metric = datasets.load_metric("wer") | |
| target_sr = processor.feature_extractor.sampling_rate if data_args.target_feature_extractor_sampling_rate else None | |
| vocabulary_chars_str = "".join(t for t in processor.tokenizer.get_vocab().keys() if len(t) == 1) | |
| vocabulary_text_cleaner = re.compile( # remove characters not in vocabulary | |
| rf"[^\s{re.escape(vocabulary_chars_str)}]", # allow space in addition to chars in vocabulary | |
| flags=re.IGNORECASE if processor.tokenizer.do_lower_case else 0, | |
| ) | |
| text_updates = [] | |
| def prepare_example(example): # TODO(elgeish) make use of multiprocessing? | |
| example["speech"], example["sampling_rate"] = librosa.load(example[data_args.speech_file_column], sr=target_sr) | |
| if data_args.max_duration_in_seconds is not None: | |
| example["duration_in_seconds"] = len(example["speech"]) / example["sampling_rate"] | |
| # Normalize and clean up text; order matters! | |
| updated_text = orthography.preprocess_for_training(example[data_args.target_text_column]) | |
| updated_text = vocabulary_text_cleaner.sub("", updated_text) | |
| if updated_text != example[data_args.target_text_column]: | |
| text_updates.append((example[data_args.target_text_column], updated_text)) | |
| example[data_args.target_text_column] = updated_text | |
| return example | |
| train_dataset = train_dataset.map(prepare_example, remove_columns=[data_args.speech_file_column]) | |
| val_dataset = val_dataset.map(prepare_example, remove_columns=[data_args.speech_file_column]) | |
| if data_args.max_duration_in_seconds is not None: | |
| def filter_by_max_duration(example): | |
| return example["duration_in_seconds"] <= data_args.max_duration_in_seconds | |
| old_train_size = len(train_dataset) | |
| old_val_size = len(val_dataset) | |
| train_dataset = train_dataset.filter(filter_by_max_duration, remove_columns=["duration_in_seconds"]) | |
| val_dataset = val_dataset.filter(filter_by_max_duration, remove_columns=["duration_in_seconds"]) | |
| if len(train_dataset) > old_train_size: | |
| logger.warning( | |
| f"Filtered out {len(train_dataset) - old_train_size} train example(s) longer than" | |
| f" {data_args.max_duration_in_seconds} second(s)." | |
| ) | |
| if len(val_dataset) > old_val_size: | |
| logger.warning( | |
| f"Filtered out {len(val_dataset) - old_val_size} validation example(s) longer than" | |
| f" {data_args.max_duration_in_seconds} second(s)." | |
| ) | |
| logger.info(f"Split sizes: {len(train_dataset)} train and {len(val_dataset)} validation.") | |
| logger.warning(f"Updated {len(text_updates)} transcript(s) using '{data_args.orthography}' orthography rules.") | |
| if logger.isEnabledFor(logging.DEBUG): | |
| for original_text, updated_text in text_updates: | |
| logger.debug(f'Updated text: "{original_text}" -> "{updated_text}"') | |
| text_updates = None | |
| def prepare_dataset(batch): | |
| # check that all files have the correct sampling rate | |
| assert ( | |
| len(set(batch["sampling_rate"])) == 1 | |
| ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." | |
| processed_batch = processor( | |
| audio=batch["speech"], text=batch[data_args.target_text_column], sampling_rate=batch["sampling_rate"][0] | |
| ) | |
| batch.update(processed_batch) | |
| return batch | |
| train_dataset = train_dataset.map( | |
| prepare_dataset, | |
| batch_size=training_args.per_device_train_batch_size, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| ) | |
| val_dataset = val_dataset.map( | |
| prepare_dataset, | |
| batch_size=training_args.per_device_train_batch_size, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| ) | |
| data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) | |
| def compute_metrics(pred): | |
| pred_logits = pred.predictions | |
| pred_ids = np.argmax(pred_logits, axis=-1) | |
| pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id | |
| pred_str = processor.batch_decode(pred_ids) | |
| # we do not want to group tokens when computing the metrics | |
| label_str = processor.batch_decode(pred.label_ids, group_tokens=False) | |
| if logger.isEnabledFor(logging.DEBUG): | |
| for reference, predicted in zip(label_str, pred_str): | |
| logger.debug(f'reference: "{reference}"') | |
| logger.debug(f'predicted: "{predicted}"') | |
| if orthography.untransliterator is not None: | |
| logger.debug(f'reference (untransliterated): "{orthography.untransliterator(reference)}"') | |
| logger.debug(f'predicted (untransliterated): "{orthography.untransliterator(predicted)}"') | |
| wer = wer_metric.compute(predictions=pred_str, references=label_str) | |
| return {"wer": wer} | |
| if model_args.freeze_feature_extractor: | |
| model.freeze_feature_extractor() | |
| trainer = CTCTrainer( | |
| model=model, | |
| data_collator=data_collator, | |
| args=training_args, | |
| compute_metrics=compute_metrics, | |
| train_dataset=train_dataset, | |
| eval_dataset=val_dataset, | |
| tokenizer=processor.feature_extractor, | |
| ) | |
| trainer.train() | |
| if __name__ == "__main__": | |
| main() | |