techconsptrs's picture
UPDATE: code update
1802405
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_community.docstore.document import Document
from langchain_huggingface import HuggingFaceEmbeddings
from src.utils.exceptions import CustomException
from src.utils.functions import getConfig
from src.utils.logging import logger
class VectorStore:
def __init__(self):
"""Initialize the VectorStore with configuration, embeddings, and text splitter."""
self.config = getConfig(path="config.ini")
self.vectorEmbeddings = HuggingFaceEmbeddings(
model_name=self.config.get("EMBEDDINGS", "embeddingModel"),
model_kwargs={"device": self.config.get("EMBEDDINGS", "device")},
encode_kwargs={"normalize_embeddings": self.config.getboolean("EMBEDDINGS", "normalize_embeddings")}
)
self.splitter = RecursiveCharacterTextSplitter(
chunk_size=self.config.getint("VECTORSTORE", "chunkSize"),
chunk_overlap=self.config.getint("VECTORSTORE", "chunkOverlap"),
add_start_index=self.config.getboolean("VECTORSTORE", "addStartIndex")
)
def setupStore(self, text: str):
"""
Set up the vector store with the provided text.
Args:
text (str): The text to store and process.
Returns:
Retriever: A retriever for querying the vector store.
"""
try:
store = InMemoryVectorStore(self.vectorEmbeddings)
textDocument = Document(page_content=text)
documents = self.splitter.split_documents([textDocument])
store.add_documents(documents=documents)
return store.as_retriever(
search_type=self.config.get("RETRIEVER", "searchType"),
search_kwargs={
"k": self.config.getint("RETRIEVER", "k"),
"fetch_k": self.config.getint("RETRIEVER", "fetchK")
}
)
except Exception as e:
logger.error(CustomException(e))
print(CustomException(e))