ishworrsubedii commited on
Commit
070b382
1 Parent(s): 8eed4f7

refactor: remove image upscale part

Browse files
mannequin_to_model.py CHANGED
@@ -26,6 +26,11 @@ SUPABASE_URL = os.getenv("SUPABASE_URL")
26
  supabase = create_client(SUPABASE_URL, SUPABASE_KEY)
27
 
28
 
 
 
 
 
 
29
  @secure_router.post("/mannequin_to_model")
30
  async def mannequinToModel(
31
  store_name: str = Form(...),
@@ -58,7 +63,7 @@ async def mannequinToModel(
58
 
59
  mannequin_image = cv2.cvtColor(np.array(mannequin_image), cv2.COLOR_RGB2BGR)
60
  person_image = cv2.cvtColor(np.array(person_image), cv2.COLOR_RGB2BGR)
61
- result = pipeline.face_swap(mannequin_image, person_image, enhance=False)
62
  result = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
63
  inMemFile = BytesIO()
64
  result.save(inMemFile, format="WEBP", quality=85)
 
26
  supabase = create_client(SUPABASE_URL, SUPABASE_KEY)
27
 
28
 
29
+ def read_return(url):
30
+ res = requests.get(url)
31
+ return res.content
32
+
33
+
34
  @secure_router.post("/mannequin_to_model")
35
  async def mannequinToModel(
36
  store_name: str = Form(...),
 
63
 
64
  mannequin_image = cv2.cvtColor(np.array(mannequin_image), cv2.COLOR_RGB2BGR)
65
  person_image = cv2.cvtColor(np.array(person_image), cv2.COLOR_RGB2BGR)
66
+ result = pipeline.face_swap(mannequin_image, person_image)
67
  result = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
68
  inMemFile = BytesIO()
69
  result.save(inMemFile, format="WEBP", quality=85)
src/components/face_enhancer.py DELETED
@@ -1,75 +0,0 @@
1
- import os
2
- import cv2
3
- import gfpgan
4
- import gdown
5
- from src.upscaler.RealESRGAN import RealESRGAN
6
- from src.utils.logger import logger
7
-
8
-
9
- def gfpgan_runner(img, model):
10
- _, imgs, _ = model.enhance(img, paste_back=True, has_aligned=True)
11
- logger.info("Image enhanced using GFPGAN")
12
- return imgs[0]
13
-
14
-
15
- def realesrgan_runner(img, model):
16
- img = model.predict(img)
17
- logger.info("Image enhanced using RealESRGAN")
18
- return img
19
-
20
-
21
- supported_enhancers = {
22
- "GFPGAN": ("artifacts/pretrained_models/GFPGANv1.4.pth", gfpgan_runner),
23
- "REAL-ESRGAN 2x": ("artifacts/pretrained_models/RealESRGAN_x2.pth", realesrgan_runner),
24
- "REAL-ESRGAN 4x": ("artifacts/pretrained_models/RealESRGAN_x4.pth", realesrgan_runner),
25
- "REAL-ESRGAN 8x": ("artifacts/pretrained_models/RealESRGAN_x8.pth", realesrgan_runner)
26
- }
27
-
28
- cv2_interpolations = ["LANCZOS4", "CUBIC", "NEAREST"]
29
-
30
-
31
- def model_check(model_url, model_path):
32
- if not os.path.exists(model_path):
33
- gdown.download(model_url, model_path, quiet=False)
34
- logger.info(f"Model downloaded to {model_path}")
35
-
36
-
37
- def load_face_enhancer_model(name='GFPGAN', device="cpu"):
38
- if name in supported_enhancers.keys():
39
- model_path, model_runner = supported_enhancers.get(name)
40
- if os.path.exists(model_path):
41
- pass
42
- else:
43
- os.mkdir(os.path.dirname(model_path))
44
- # model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
45
- if name == 'GFPGAN':
46
- model_url = 'https://drive.google.com/uc?id=1QsJPgvZNwFsBktbeYENVsEq663UgBQRj'
47
- model_check(model_url, model_path)
48
- model = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=device)
49
- elif name == 'REAL-ESRGAN 2x':
50
- model_url = 'https://drive.google.com/uc?id=1BYFc4ttYGHmA-GZMmgXW9NdgPkXkgjtv'
51
- model_check(model_url, model_path)
52
- model = RealESRGAN(device, scale=2)
53
- model.load_weights(model_path, download=False)
54
- elif name == 'REAL-ESRGAN 4x':
55
- model_url = 'https://drive.google.com/uc?id=1N4MNjfGhrz-CHq99WCp6NEfgzMIGxAE0'
56
- model_check(model_url, model_path)
57
- model = RealESRGAN(device, scale=4)
58
- model.load_weights(model_path, download=False)
59
- elif name == 'REAL-ESRGAN 8x':
60
- model_url = 'https://drive.google.com/uc?id=14FtSjtgtl8iySVrrvFDX-HxCCkdbsoPh'
61
- model_check(model_url, model_path)
62
- model = RealESRGAN(device, scale=8)
63
- model.load_weights(model_path, download=False)
64
- elif name == 'LANCZOS4':
65
- model = None
66
- model_runner = lambda img, _: cv2.resize(img, (512, 512), interpolation=cv2.INTER_LANCZOS4)
67
- elif name == 'CUBIC':
68
- model = None
69
- model_runner = lambda img, _: cv2.resize(img, (512, 512), interpolation=cv2.INTER_CUBIC)
70
- elif name == 'NEAREST':
71
- model = None
72
- model_runner = lambda img, _: cv2.resize(img, (512, 512), interpolation=cv2.INTER_NEAREST)
73
- else:
74
- model = None
75
- return (model, model_runner)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/components/faceswap.py CHANGED
@@ -1,12 +1,9 @@
1
  import os
2
- import cv2
3
  import gdown
4
  import insightface
5
  from insightface.app import FaceAnalysis
6
- from PIL import Image
7
  from src.utils.logger import logger
8
  import warnings
9
- from src.components.face_enhancer import load_face_enhancer_model
10
 
11
  warnings.filterwarnings("ignore", category=FutureWarning)
12
 
@@ -18,16 +15,9 @@ class FaceSwapper:
18
  self.app = FaceAnalysis(name=app_name, root=model_dir)
19
  self.app.prepare(ctx_id=0 if device == "cuda" else -1, det_size=det_size)
20
  self.swapper = None
21
- self.enhancer_model = None
22
- self.model_runner = None
23
  logger.info('FaceSwapper initialized')
24
 
25
- def load_enhancer_model(self, enhancer, device):
26
- model, model_runner = load_face_enhancer_model(enhancer, device)
27
- logger.info(f'{enhancer} model loaded')
28
- self.enhancer_model = model
29
- self.model_runner = model_runner
30
- logger.info('Enhancer model loaded')
31
 
32
  def load_swapper_model(self, model_url, model_path):
33
  # Set up the gdown cache directory
@@ -59,7 +49,5 @@ class FaceSwapper:
59
  face2 = self.app.get(img2)[0]
60
  img1_ = img1.copy()
61
  img1_ = self.swapper.get(img1_, face1, face2, paste_back=True)
62
- if enhance:
63
- img1_ = self.model_runner(img1_, self.enhancer_model)
64
  logger.info('Face swapped')
65
  return img1_
 
1
  import os
 
2
  import gdown
3
  import insightface
4
  from insightface.app import FaceAnalysis
 
5
  from src.utils.logger import logger
6
  import warnings
 
7
 
8
  warnings.filterwarnings("ignore", category=FutureWarning)
9
 
 
15
  self.app = FaceAnalysis(name=app_name, root=model_dir)
16
  self.app.prepare(ctx_id=0 if device == "cuda" else -1, det_size=det_size)
17
  self.swapper = None
18
+
 
19
  logger.info('FaceSwapper initialized')
20
 
 
 
 
 
 
 
21
 
22
  def load_swapper_model(self, model_url, model_path):
23
  # Set up the gdown cache directory
 
49
  face2 = self.app.get(img2)[0]
50
  img1_ = img1.copy()
51
  img1_ = self.swapper.get(img1_, face1, face2, paste_back=True)
 
 
52
  logger.info('Face swapped')
53
  return img1_
src/entity/__init__.py DELETED
@@ -1,4 +0,0 @@
1
- """
2
- Created By: ishwor subedi
3
- Date: 2024-07-03
4
- """
 
 
 
 
 
src/entity/fastapi_entity.py DELETED
@@ -1,4 +0,0 @@
1
- """
2
- Created By: ishwor subedi
3
- Date: 2024-07-03
4
- """
 
 
 
 
 
src/pipeline/main_pipeline.py CHANGED
@@ -16,8 +16,8 @@ class MainPipeline:
16
  'https://drive.google.com/uc?id=1HvZ4MAtzlY74Dk4ASGIS9L6Rg5oZdqvu',
17
  'artifacts/inswapper/inswapper_128.onnx'
18
  )
19
- self.face_swapper.load_enhancer_model('REAL-ESRGAN 2x', device)
20
 
21
- def face_swap(self, img1: np.array, img2: np.array, enhance: bool = False) -> Image:
22
- result = self.face_swapper.face_swap(img1, img2, enhance)
23
  return result
 
16
  'https://drive.google.com/uc?id=1HvZ4MAtzlY74Dk4ASGIS9L6Rg5oZdqvu',
17
  'artifacts/inswapper/inswapper_128.onnx'
18
  )
19
+ # self.face_swapper.load_enhancer_model('REAL-ESRGAN 2x', device)
20
 
21
+ def face_swap(self, img1: np.array, img2: np.array) -> Image:
22
+ result = self.face_swapper.face_swap(img1, img2)
23
  return result
src/upscaler/RealESRGAN/__init__.py DELETED
@@ -1 +0,0 @@
1
- from .model import RealESRGAN
 
 
src/upscaler/RealESRGAN/arch_utils.py DELETED
@@ -1,197 +0,0 @@
1
- import math
2
- import torch
3
- from torch import nn as nn
4
- from torch.nn import functional as F
5
- from torch.nn import init as init
6
- from torch.nn.modules.batchnorm import _BatchNorm
7
-
8
- @torch.no_grad()
9
- def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
10
- """Initialize network weights.
11
-
12
- Args:
13
- module_list (list[nn.Module] | nn.Module): Modules to be initialized.
14
- scale (float): Scale initialized weights, especially for residual
15
- blocks. Default: 1.
16
- bias_fill (float): The value to fill bias. Default: 0
17
- kwargs (dict): Other arguments for initialization function.
18
- """
19
- if not isinstance(module_list, list):
20
- module_list = [module_list]
21
- for module in module_list:
22
- for m in module.modules():
23
- if isinstance(m, nn.Conv2d):
24
- init.kaiming_normal_(m.weight, **kwargs)
25
- m.weight.data *= scale
26
- if m.bias is not None:
27
- m.bias.data.fill_(bias_fill)
28
- elif isinstance(m, nn.Linear):
29
- init.kaiming_normal_(m.weight, **kwargs)
30
- m.weight.data *= scale
31
- if m.bias is not None:
32
- m.bias.data.fill_(bias_fill)
33
- elif isinstance(m, _BatchNorm):
34
- init.constant_(m.weight, 1)
35
- if m.bias is not None:
36
- m.bias.data.fill_(bias_fill)
37
-
38
-
39
- def make_layer(basic_block, num_basic_block, **kwarg):
40
- """Make layers by stacking the same blocks.
41
-
42
- Args:
43
- basic_block (nn.module): nn.module class for basic block.
44
- num_basic_block (int): number of blocks.
45
-
46
- Returns:
47
- nn.Sequential: Stacked blocks in nn.Sequential.
48
- """
49
- layers = []
50
- for _ in range(num_basic_block):
51
- layers.append(basic_block(**kwarg))
52
- return nn.Sequential(*layers)
53
-
54
-
55
- class ResidualBlockNoBN(nn.Module):
56
- """Residual block without BN.
57
-
58
- It has a style of:
59
- ---Conv-ReLU-Conv-+-
60
- |________________|
61
-
62
- Args:
63
- num_feat (int): Channel number of intermediate features.
64
- Default: 64.
65
- res_scale (float): Residual scale. Default: 1.
66
- pytorch_init (bool): If set to True, use pytorch default init,
67
- otherwise, use default_init_weights. Default: False.
68
- """
69
-
70
- def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
71
- super(ResidualBlockNoBN, self).__init__()
72
- self.res_scale = res_scale
73
- self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
74
- self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
75
- self.relu = nn.ReLU(inplace=True)
76
-
77
- if not pytorch_init:
78
- default_init_weights([self.conv1, self.conv2], 0.1)
79
-
80
- def forward(self, x):
81
- identity = x
82
- out = self.conv2(self.relu(self.conv1(x)))
83
- return identity + out * self.res_scale
84
-
85
-
86
- class Upsample(nn.Sequential):
87
- """Upsample module.
88
-
89
- Args:
90
- scale (int): Scale factor. Supported scales: 2^n and 3.
91
- num_feat (int): Channel number of intermediate features.
92
- """
93
-
94
- def __init__(self, scale, num_feat):
95
- m = []
96
- if (scale & (scale - 1)) == 0: # scale = 2^n
97
- for _ in range(int(math.log(scale, 2))):
98
- m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
99
- m.append(nn.PixelShuffle(2))
100
- elif scale == 3:
101
- m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
102
- m.append(nn.PixelShuffle(3))
103
- else:
104
- raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
105
- super(Upsample, self).__init__(*m)
106
-
107
-
108
- def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
109
- """Warp an image or feature map with optical flow.
110
-
111
- Args:
112
- x (Tensor): Tensor with size (n, c, h, w).
113
- flow (Tensor): Tensor with size (n, h, w, 2), normal value.
114
- interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
115
- padding_mode (str): 'zeros' or 'border' or 'reflection'.
116
- Default: 'zeros'.
117
- align_corners (bool): Before pytorch 1.3, the default value is
118
- align_corners=True. After pytorch 1.3, the default value is
119
- align_corners=False. Here, we use the True as default.
120
-
121
- Returns:
122
- Tensor: Warped image or feature map.
123
- """
124
- assert x.size()[-2:] == flow.size()[1:3]
125
- _, _, h, w = x.size()
126
- # create mesh grid
127
- grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
128
- grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
129
- grid.requires_grad = False
130
-
131
- vgrid = grid + flow
132
- # scale grid to [-1,1]
133
- vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
134
- vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
135
- vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
136
- output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
137
-
138
- # TODO, what if align_corners=False
139
- return output
140
-
141
-
142
- def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
143
- """Resize a flow according to ratio or shape.
144
-
145
- Args:
146
- flow (Tensor): Precomputed flow. shape [N, 2, H, W].
147
- size_type (str): 'ratio' or 'shape'.
148
- sizes (list[int | float]): the ratio for resizing or the final output
149
- shape.
150
- 1) The order of ratio should be [ratio_h, ratio_w]. For
151
- downsampling, the ratio should be smaller than 1.0 (i.e., ratio
152
- < 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
153
- ratio > 1.0).
154
- 2) The order of output_size should be [out_h, out_w].
155
- interp_mode (str): The mode of interpolation for resizing.
156
- Default: 'bilinear'.
157
- align_corners (bool): Whether align corners. Default: False.
158
-
159
- Returns:
160
- Tensor: Resized flow.
161
- """
162
- _, _, flow_h, flow_w = flow.size()
163
- if size_type == 'ratio':
164
- output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
165
- elif size_type == 'shape':
166
- output_h, output_w = sizes[0], sizes[1]
167
- else:
168
- raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
169
-
170
- input_flow = flow.clone()
171
- ratio_h = output_h / flow_h
172
- ratio_w = output_w / flow_w
173
- input_flow[:, 0, :, :] *= ratio_w
174
- input_flow[:, 1, :, :] *= ratio_h
175
- resized_flow = F.interpolate(
176
- input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
177
- return resized_flow
178
-
179
-
180
- # TODO: may write a cpp file
181
- def pixel_unshuffle(x, scale):
182
- """ Pixel unshuffle.
183
-
184
- Args:
185
- x (Tensor): Input feature with shape (b, c, hh, hw).
186
- scale (int): Downsample ratio.
187
-
188
- Returns:
189
- Tensor: the pixel unshuffled feature.
190
- """
191
- b, c, hh, hw = x.size()
192
- out_channel = c * (scale**2)
193
- assert hh % scale == 0 and hw % scale == 0
194
- h = hh // scale
195
- w = hw // scale
196
- x_view = x.view(b, c, h, scale, w, scale)
197
- return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/upscaler/RealESRGAN/model.py DELETED
@@ -1,90 +0,0 @@
1
- import os
2
- import torch
3
- from torch.nn import functional as F
4
- from PIL import Image
5
- import numpy as np
6
- import cv2
7
-
8
- from .rrdbnet_arch import RRDBNet
9
- from .utils import pad_reflect, split_image_into_overlapping_patches, stich_together, \
10
- unpad_image
11
-
12
-
13
- HF_MODELS = {
14
- 2: dict(
15
- repo_id='sberbank-ai/Real-ESRGAN',
16
- filename='RealESRGAN_x2.pth',
17
- ),
18
- 4: dict(
19
- repo_id='sberbank-ai/Real-ESRGAN',
20
- filename='RealESRGAN_x4.pth',
21
- ),
22
- 8: dict(
23
- repo_id='sberbank-ai/Real-ESRGAN',
24
- filename='RealESRGAN_x8.pth',
25
- ),
26
- }
27
-
28
-
29
- class RealESRGAN:
30
- def __init__(self, device, scale=4):
31
- self.device = device
32
- self.scale = scale
33
- self.model = RRDBNet(
34
- num_in_ch=3, num_out_ch=3, num_feat=64,
35
- num_block=23, num_grow_ch=32, scale=scale
36
- )
37
-
38
- def load_weights(self, model_path, download=True):
39
- if not os.path.exists(model_path) and download:
40
- from huggingface_hub import hf_hub_url, cached_download
41
- assert self.scale in [2,4,8], 'You can download models only with scales: 2, 4, 8'
42
- config = HF_MODELS[self.scale]
43
- cache_dir = os.path.dirname(model_path)
44
- local_filename = os.path.basename(model_path)
45
- config_file_url = hf_hub_url(repo_id=config['repo_id'], filename=config['filename'])
46
- cached_download(config_file_url, cache_dir=cache_dir, force_filename=local_filename)
47
- print('Weights downloaded to:', os.path.join(cache_dir, local_filename))
48
-
49
- loadnet = torch.load(model_path)
50
- if 'params' in loadnet:
51
- self.model.load_state_dict(loadnet['params'], strict=True)
52
- elif 'params_ema' in loadnet:
53
- self.model.load_state_dict(loadnet['params_ema'], strict=True)
54
- else:
55
- self.model.load_state_dict(loadnet, strict=True)
56
- self.model.eval()
57
- self.model.to(self.device)
58
-
59
- @torch.cuda.amp.autocast()
60
- def predict(self, lr_image, batch_size=4, patches_size=192,
61
- padding=24, pad_size=15):
62
- scale = self.scale
63
- device = self.device
64
- lr_image = np.array(lr_image)
65
- lr_image = pad_reflect(lr_image, pad_size)
66
-
67
- patches, p_shape = split_image_into_overlapping_patches(
68
- lr_image, patch_size=patches_size, padding_size=padding
69
- )
70
- img = torch.FloatTensor(patches/255).permute((0,3,1,2)).to(device).detach()
71
-
72
- with torch.no_grad():
73
- res = self.model(img[0:batch_size])
74
- for i in range(batch_size, img.shape[0], batch_size):
75
- res = torch.cat((res, self.model(img[i:i+batch_size])), 0)
76
-
77
- sr_image = res.permute((0,2,3,1)).clamp_(0, 1).cpu()
78
- np_sr_image = sr_image.numpy()
79
-
80
- padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,)
81
- scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,)
82
- np_sr_image = stich_together(
83
- np_sr_image, padded_image_shape=padded_size_scaled,
84
- target_shape=scaled_image_shape, padding_size=padding * scale
85
- )
86
- sr_img = (np_sr_image*255).astype(np.uint8)
87
- sr_img = unpad_image(sr_img, pad_size*scale)
88
- #sr_img = Image.fromarray(sr_img)
89
-
90
- return sr_img
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/upscaler/RealESRGAN/rrdbnet_arch.py DELETED
@@ -1,121 +0,0 @@
1
- import torch
2
- from torch import nn as nn
3
- from torch.nn import functional as F
4
-
5
- from .arch_utils import default_init_weights, make_layer, pixel_unshuffle
6
-
7
-
8
- class ResidualDenseBlock(nn.Module):
9
- """Residual Dense Block.
10
-
11
- Used in RRDB block in ESRGAN.
12
-
13
- Args:
14
- num_feat (int): Channel number of intermediate features.
15
- num_grow_ch (int): Channels for each growth.
16
- """
17
-
18
- def __init__(self, num_feat=64, num_grow_ch=32):
19
- super(ResidualDenseBlock, self).__init__()
20
- self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
21
- self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
22
- self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
23
- self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
24
- self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
25
-
26
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
27
-
28
- # initialization
29
- default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
30
-
31
- def forward(self, x):
32
- x1 = self.lrelu(self.conv1(x))
33
- x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
34
- x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
35
- x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
36
- x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
37
- # Emperically, we use 0.2 to scale the residual for better performance
38
- return x5 * 0.2 + x
39
-
40
-
41
- class RRDB(nn.Module):
42
- """Residual in Residual Dense Block.
43
-
44
- Used in RRDB-Net in ESRGAN.
45
-
46
- Args:
47
- num_feat (int): Channel number of intermediate features.
48
- num_grow_ch (int): Channels for each growth.
49
- """
50
-
51
- def __init__(self, num_feat, num_grow_ch=32):
52
- super(RRDB, self).__init__()
53
- self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
54
- self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
55
- self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
56
-
57
- def forward(self, x):
58
- out = self.rdb1(x)
59
- out = self.rdb2(out)
60
- out = self.rdb3(out)
61
- # Emperically, we use 0.2 to scale the residual for better performance
62
- return out * 0.2 + x
63
-
64
-
65
- class RRDBNet(nn.Module):
66
- """Networks consisting of Residual in Residual Dense Block, which is used
67
- in ESRGAN.
68
-
69
- ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
70
-
71
- We extend ESRGAN for scale x2 and scale x1.
72
- Note: This is one option for scale 1, scale 2 in RRDBNet.
73
- We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
74
- and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
75
-
76
- Args:
77
- num_in_ch (int): Channel number of inputs.
78
- num_out_ch (int): Channel number of outputs.
79
- num_feat (int): Channel number of intermediate features.
80
- Default: 64
81
- num_block (int): Block number in the trunk network. Defaults: 23
82
- num_grow_ch (int): Channels for each growth. Default: 32.
83
- """
84
-
85
- def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
86
- super(RRDBNet, self).__init__()
87
- self.scale = scale
88
- if scale == 2:
89
- num_in_ch = num_in_ch * 4
90
- elif scale == 1:
91
- num_in_ch = num_in_ch * 16
92
- self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
93
- self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
94
- self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
95
- # upsample
96
- self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
97
- self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
98
- if scale == 8:
99
- self.conv_up3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
100
- self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
101
- self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
102
-
103
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
104
-
105
- def forward(self, x):
106
- if self.scale == 2:
107
- feat = pixel_unshuffle(x, scale=2)
108
- elif self.scale == 1:
109
- feat = pixel_unshuffle(x, scale=4)
110
- else:
111
- feat = x
112
- feat = self.conv_first(feat)
113
- body_feat = self.conv_body(self.body(feat))
114
- feat = feat + body_feat
115
- # upsample
116
- feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
117
- feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
118
- if self.scale == 8:
119
- feat = self.lrelu(self.conv_up3(F.interpolate(feat, scale_factor=2, mode='nearest')))
120
- out = self.conv_last(self.lrelu(self.conv_hr(feat)))
121
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/upscaler/RealESRGAN/utils.py DELETED
@@ -1,133 +0,0 @@
1
- import numpy as np
2
- import torch
3
- from PIL import Image
4
- import os
5
- import io
6
-
7
- def pad_reflect(image, pad_size):
8
- imsize = image.shape
9
- height, width = imsize[:2]
10
- new_img = np.zeros([height+pad_size*2, width+pad_size*2, imsize[2]]).astype(np.uint8)
11
- new_img[pad_size:-pad_size, pad_size:-pad_size, :] = image
12
-
13
- new_img[0:pad_size, pad_size:-pad_size, :] = np.flip(image[0:pad_size, :, :], axis=0) #top
14
- new_img[-pad_size:, pad_size:-pad_size, :] = np.flip(image[-pad_size:, :, :], axis=0) #bottom
15
- new_img[:, 0:pad_size, :] = np.flip(new_img[:, pad_size:pad_size*2, :], axis=1) #left
16
- new_img[:, -pad_size:, :] = np.flip(new_img[:, -pad_size*2:-pad_size, :], axis=1) #right
17
-
18
- return new_img
19
-
20
- def unpad_image(image, pad_size):
21
- return image[pad_size:-pad_size, pad_size:-pad_size, :]
22
-
23
-
24
- def process_array(image_array, expand=True):
25
- """ Process a 3-dimensional array into a scaled, 4 dimensional batch of size 1. """
26
-
27
- image_batch = image_array / 255.0
28
- if expand:
29
- image_batch = np.expand_dims(image_batch, axis=0)
30
- return image_batch
31
-
32
-
33
- def process_output(output_tensor):
34
- """ Transforms the 4-dimensional output tensor into a suitable image format. """
35
-
36
- sr_img = output_tensor.clip(0, 1) * 255
37
- sr_img = np.uint8(sr_img)
38
- return sr_img
39
-
40
-
41
- def pad_patch(image_patch, padding_size, channel_last=True):
42
- """ Pads image_patch with with padding_size edge values. """
43
-
44
- if channel_last:
45
- return np.pad(
46
- image_patch,
47
- ((padding_size, padding_size), (padding_size, padding_size), (0, 0)),
48
- 'edge',
49
- )
50
- else:
51
- return np.pad(
52
- image_patch,
53
- ((0, 0), (padding_size, padding_size), (padding_size, padding_size)),
54
- 'edge',
55
- )
56
-
57
-
58
- def unpad_patches(image_patches, padding_size):
59
- return image_patches[:, padding_size:-padding_size, padding_size:-padding_size, :]
60
-
61
-
62
- def split_image_into_overlapping_patches(image_array, patch_size, padding_size=2):
63
- """ Splits the image into partially overlapping patches.
64
- The patches overlap by padding_size pixels.
65
- Pads the image twice:
66
- - first to have a size multiple of the patch size,
67
- - then to have equal padding at the borders.
68
- Args:
69
- image_array: numpy array of the input image.
70
- patch_size: size of the patches from the original image (without padding).
71
- padding_size: size of the overlapping area.
72
- """
73
-
74
- xmax, ymax, _ = image_array.shape
75
- x_remainder = xmax % patch_size
76
- y_remainder = ymax % patch_size
77
-
78
- # modulo here is to avoid extending of patch_size instead of 0
79
- x_extend = (patch_size - x_remainder) % patch_size
80
- y_extend = (patch_size - y_remainder) % patch_size
81
-
82
- # make sure the image is divisible into regular patches
83
- extended_image = np.pad(image_array, ((0, x_extend), (0, y_extend), (0, 0)), 'edge')
84
-
85
- # add padding around the image to simplify computations
86
- padded_image = pad_patch(extended_image, padding_size, channel_last=True)
87
-
88
- xmax, ymax, _ = padded_image.shape
89
- patches = []
90
-
91
- x_lefts = range(padding_size, xmax - padding_size, patch_size)
92
- y_tops = range(padding_size, ymax - padding_size, patch_size)
93
-
94
- for x in x_lefts:
95
- for y in y_tops:
96
- x_left = x - padding_size
97
- y_top = y - padding_size
98
- x_right = x + patch_size + padding_size
99
- y_bottom = y + patch_size + padding_size
100
- patch = padded_image[x_left:x_right, y_top:y_bottom, :]
101
- patches.append(patch)
102
-
103
- return np.array(patches), padded_image.shape
104
-
105
-
106
- def stich_together(patches, padded_image_shape, target_shape, padding_size=4):
107
- """ Reconstruct the image from overlapping patches.
108
- After scaling, shapes and padding should be scaled too.
109
- Args:
110
- patches: patches obtained with split_image_into_overlapping_patches
111
- padded_image_shape: shape of the padded image contructed in split_image_into_overlapping_patches
112
- target_shape: shape of the final image
113
- padding_size: size of the overlapping area.
114
- """
115
-
116
- xmax, ymax, _ = padded_image_shape
117
- patches = unpad_patches(patches, padding_size)
118
- patch_size = patches.shape[1]
119
- n_patches_per_row = ymax // patch_size
120
-
121
- complete_image = np.zeros((xmax, ymax, 3))
122
-
123
- row = -1
124
- col = 0
125
- for i in range(len(patches)):
126
- if i % n_patches_per_row == 0:
127
- row += 1
128
- col = 0
129
- complete_image[
130
- row * patch_size: (row + 1) * patch_size, col * patch_size: (col + 1) * patch_size,:
131
- ] = patches[i]
132
- col += 1
133
- return complete_image[0: target_shape[0], 0: target_shape[1], :]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/upscaler/__init__.py DELETED
File without changes